Spectral triples for hyperbolic dynamical systems

被引:6
|
作者
Whittaker, Michael F. [1 ]
机构
[1] Univ Wollongong, Sch Math & Appl Stat, Wollongong, NSW 2522, Australia
基金
澳大利亚研究理事会;
关键词
C*-algebra; dynamical system; noncommutative geometry; Smale space; spectral triple; C-ASTERISK-ALGEBRAS; FREDHOLM MODULES; DIFFEOMORPHISMS; SPACES;
D O I
10.4171/JNCG/127
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spectral triples are defined for C*-algebras associated with hyperbolic dynamical systems known as Smale spaces. The spectral dimension of one of these spectral triples is shown to recover the topological entropy of the Smale space.
引用
收藏
页码:563 / 582
页数:20
相关论文
共 50 条
  • [21] κ-DEFORMATION AND SPECTRAL TRIPLES
    Iochum, B.
    Masson, T.
    Schuecker, T.
    Sitarz, A.
    [J]. GEOMETRY AND PHYSICS IN CRACOW, 2011, 4 (03): : 305 - +
  • [22] Spectral triples for subshifts
    Julien, Antoine
    Putnam, Ian
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (03) : 1031 - 1063
  • [23] Spectral triples and ζ-cycles
    Connes, Alain
    Consani, Caterina
    [J]. ENSEIGNEMENT MATHEMATIQUE, 2023, 69 (1-2): : 93 - 148
  • [24] THE SPECTRAL LOCALIZER FOR SEMIFINITE SPECTRAL TRIPLES
    Schulz-Baldes, Hermann
    Stoiber, Tom
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (01) : 121 - 134
  • [25] Spectral Flow for Nonunital Spectral Triples
    Carey, A. L.
    Gayral, V.
    Phillips, J.
    Rennie, A.
    Sukochev, F. A.
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (04): : 759 - 794
  • [26] Spectral properties of dynamical power systems
    Koeth, Felix
    Retiere, Nicolas
    [J]. 2019 IEEE MILAN POWERTECH, 2019,
  • [27] TOPOLOGICAL EQUIVALENCE OF NORMALLY HYPERBOLIC DYNAMICAL-SYSTEMS
    PALIS, J
    TAKENS, F
    [J]. TOPOLOGY, 1977, 16 (04) : 335 - 345
  • [28] Einstein's equations and equivalent hyperbolic dynamical systems
    Anderson, A
    Choquet-Bruhat, Y
    York, JW
    [J]. MATHEMATICAL AND QUANTUM ASPECTS OF RELATIVITY AND COSMOLOGY, 2000, 536 : 30 - 54
  • [29] Coherent structures in dynamical systems described by hyperbolic equation
    Abramian, AK
    Vakulenko, SA
    [J]. CONTROL OF OSCILLATIONS AND CHAOS, VOLS 1-3, PROCEEDINGS, 2000, : 360 - 364
  • [30] Slow Rates of Mixing for Dynamical Systems with Hyperbolic Structures
    José F. Alves
    Vilton Pinheiro
    [J]. Journal of Statistical Physics, 2008, 131 : 505 - 534