Pairwise Cardinality Networks

被引:28
|
作者
Codish, Michael [1 ]
Zazon-Ivry, Moshe [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Comp Sci, IL-84105 Beer Sheva, Israel
关键词
D O I
10.1007/978-3-642-17511-4_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce pairwise cardinality networks, networks of comparators, derived from pairwise sorting networks, which express cardinality constraints. We show that pairwise cardinality networks are superior to the cardinality networks introduced in previous work which are derived from odd-even sorting networks. Our presentation identifies the precise relationship between odd-even and pairwise sorting networks. This relationship also clarifies why pairwise sorting networks have significantly better propagation properties for the application of cardinality constraints.
引用
收藏
页码:154 / 172
页数:19
相关论文
共 50 条
  • [21] Designing networks with bounded pairwise distance
    Massachusetts Inst of Technology, United States
    Conf Proc Annu ACM Symp Theory Comput, (750-759):
  • [22] On the Existence of Pairwise Stable Weighted Networks
    Bich, Philippe
    Morhaim, Lisa
    MATHEMATICS OF OPERATIONS RESEARCH, 2020, 45 (04) : 1393 - 1404
  • [23] Static pairwise annihilation in complex networks
    Laguna, MF
    Aldana, M
    Larralde, H
    Parris, PE
    Kenkre, VM
    PHYSICAL REVIEW E, 2005, 72 (02):
  • [24] On the existence and uniqueness of pairwise stable networks
    Tim Hellmann
    International Journal of Game Theory, 2013, 42 : 211 - 237
  • [25] Correction to: The computation of pairwise stable networks
    P. Jean-Jacques Herings
    Yang Zhan
    Mathematical Programming, 2024, 203 (1-2) : 475 - 476
  • [26] Adaptive Regulatory Genes Cardinality for Reconstructing Genetic Networks
    Chowdhury, Ahsan Raja
    Chetty, Madhu
    Nguyen Xuan Vinh
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [27] UNIVERSAL BOUND ON THE CARDINALITY OF LOCAL HIDDEN VARIABLES IN NETWORKS
    Rosset, Denis
    Gisin, Nicolas
    Wolfe, Elie
    QUANTUM INFORMATION & COMPUTATION, 2018, 18 (11-12) : 910 - 926
  • [28] Two-Connected Networks with Rings of Bounded Cardinality
    B. Fortz
    M. Labbé
    Computational Optimization and Applications, 2004, 27 : 123 - 148
  • [29] Lightweight Neighborhood Cardinality Estimation in Dynamic Wireless Networks
    Cattani, Marco
    Zuniga, Marco
    Loukas, Andreas
    Langendoen, Koen
    PROCEEDINGS OF THE 13TH INTERNATIONAL SYMPOSIUM ON INFORMATION PROCESSING IN SENSOR NETWORKS (IPSN' 14), 2014, : 179 - 189
  • [30] Cardinality-Minimal Explanations for Monotonic Neural Networks
    El Harzli, Ouns
    Grau, Bernardo Cuenca
    Horrocks, Ian
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 3677 - 3685