Comparison of Bootstrap Confidence Intervals Using Monte Carlo Simulations

被引:12
|
作者
Flowers-Cano, Roberto S. [1 ]
Ortiz-Gomez, Ruperto [2 ]
Enrique Leon-Jimenez, Jesus [1 ]
Lopez Rivera, Raul [3 ]
Perera Cruz, Luis A. [1 ]
机构
[1] Univ Juarez Autonoma Tabasco, Div Acad Ingn & Arquitectura, Carretera Cunduacan Jalpa de Mendez Km 1, Cunduacan 86080, Tabasco, Mexico
[2] Univ Autonoma Zacatecas, Unidad Acad Ingn, Ave Ramon Lopez Velarde 801, Zacatecas 98000, Mexico
[3] Inst Politecn Nacl, Unidad Ticoman Ciencias Tierra, Escuela Super Ingn & Arquitectura, Ave Ticoman 600, Mexico City 07340, DF, Mexico
来源
WATER | 2018年 / 10卷 / 02期
关键词
Monte Carlo simulations; confidence intervals; coverage; bootstrap; maximum annual precipitation; RESAMPLING TECHNIQUES; CONSTRUCTION;
D O I
10.3390/w10020166
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Design of hydraulic works requires the estimation of design hydrological events by statistical inference from a probability distribution. Using Monte Carlo simulations, we compared coverage of confidence intervals constructed with four bootstrap techniques: percentile bootstrap (BP), bias-corrected bootstrap (BC), accelerated bias-corrected bootstrap (BCA) and a modified version of the standard bootstrap (MSB). Different simulation scenarios were analyzed. In some cases, the mother distribution function was fit to the random samples that were generated. In other cases, a distribution function different to the mother distribution was fit to the samples. When the fitted distribution had three parameters, and was the same as the mother distribution, the intervals constructed with the four techniques had acceptable coverage. However, the bootstrap techniques failed in several of the cases in which the fitted distribution had two parameters.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] A comparison of bootstrap methods to construct confidence intervals in QTL mapping
    Walling, GA
    Visscher, PM
    Haley, CS
    [J]. GENETICAL RESEARCH, 1998, 71 (02) : 171 - 180
  • [42] Bootstrap Monte Carlo Simulation of Reliability and Confidence Level with Periodical Maintenance
    Mueller, Frank
    Zeiler, Peter
    Bertsche, Bernd
    [J]. FORSCHUNG IM INGENIEURWESEN-ENGINEERING RESEARCH, 2017, 81 (04): : 383 - 393
  • [43] Confidence interval procedures for Monte Carlo transport simulations
    Pederson, SP
    Forster, RA
    Booth, TE
    [J]. NUCLEAR SCIENCE AND ENGINEERING, 1997, 127 (01) : 54 - 77
  • [44] A Monte Carlo comparison of three consistent bootstrap procedures
    Mejias, R. Pino
    Gamero, M. D. Jimenez
    Gonzalez, A. Enguix
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2009, 79 (04) : 323 - 334
  • [45] On the power of bootstrap tests for stationarity: a Monte Carlo comparison
    Gulesserian, Sevan G.
    Kejriwal, Mohitosh
    [J]. EMPIRICAL ECONOMICS, 2014, 46 (03) : 973 - 998
  • [46] On the power of bootstrap tests for stationarity: a Monte Carlo comparison
    Sevan G. Gulesserian
    Mohitosh Kejriwal
    [J]. Empirical Economics, 2014, 46 : 973 - 998
  • [47] Comparison of Weibull small samples using Monte Carlo simulations
    Lam, R.
    Spelt, J. K.
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2007, 23 (04) : 503 - 513
  • [48] Advantages of Monte Carlo Confidence Intervals for Incremental Cost-Effectiveness Ratios: A Comparison of Five Methods
    Dong, Nianbo
    Maynard, Rebecca A.
    Kelcey, Benjamin
    Spybrook, Jessaca
    Li, Wei
    Bowden, A. Brooks
    Pham, Dung
    [J]. JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS, 2024,
  • [49] Uncertainty and confidence intervals in optical design using the Monte Carlo ray-trace method
    Sánchez, MC
    Nevárez, F
    Mahan, JR
    Priestley, KJ
    [J]. SENSORS, SYSTEMS, AND NEXT-GENERATION SATELLITES IV, 2000, 4169 : 190 - 201
  • [50] CONFIDENCE INTERVALS FOR VARIANCE COMPONENTS - COMPARATIVE MONTE-CARLO STUDY
    BOARDMAN, TJ
    [J]. BIOMETRICS, 1974, 30 (02) : 251 - 262