Comparison of Bootstrap Confidence Intervals Using Monte Carlo Simulations

被引:12
|
作者
Flowers-Cano, Roberto S. [1 ]
Ortiz-Gomez, Ruperto [2 ]
Enrique Leon-Jimenez, Jesus [1 ]
Lopez Rivera, Raul [3 ]
Perera Cruz, Luis A. [1 ]
机构
[1] Univ Juarez Autonoma Tabasco, Div Acad Ingn & Arquitectura, Carretera Cunduacan Jalpa de Mendez Km 1, Cunduacan 86080, Tabasco, Mexico
[2] Univ Autonoma Zacatecas, Unidad Acad Ingn, Ave Ramon Lopez Velarde 801, Zacatecas 98000, Mexico
[3] Inst Politecn Nacl, Unidad Ticoman Ciencias Tierra, Escuela Super Ingn & Arquitectura, Ave Ticoman 600, Mexico City 07340, DF, Mexico
来源
WATER | 2018年 / 10卷 / 02期
关键词
Monte Carlo simulations; confidence intervals; coverage; bootstrap; maximum annual precipitation; RESAMPLING TECHNIQUES; CONSTRUCTION;
D O I
10.3390/w10020166
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Design of hydraulic works requires the estimation of design hydrological events by statistical inference from a probability distribution. Using Monte Carlo simulations, we compared coverage of confidence intervals constructed with four bootstrap techniques: percentile bootstrap (BP), bias-corrected bootstrap (BC), accelerated bias-corrected bootstrap (BCA) and a modified version of the standard bootstrap (MSB). Different simulation scenarios were analyzed. In some cases, the mother distribution function was fit to the random samples that were generated. In other cases, a distribution function different to the mother distribution was fit to the samples. When the fitted distribution had three parameters, and was the same as the mother distribution, the intervals constructed with the four techniques had acceptable coverage. However, the bootstrap techniques failed in several of the cases in which the fitted distribution had two parameters.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] A comparison study of modal parameter confidence intervals computed using the Monte Carlo and bootstrap techniques
    Farrar, CR
    Doebling, SW
    Cornwell, PJ
    [J]. IMAC - PROCEEDINGS OF THE 16TH INTERNATIONAL MODAL ANALYSIS CONFERENCE, VOLS 1 AND 2, 1998, 3243 : 936 - 944
  • [2] Comparison of Sampling Plans by Variables using the Bootstrap and Monte Carlo Simulations
    Figueiredo, Fernanda
    Figueiredo, Adelaide
    Gomes, M. Ivette
    [J]. INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 535 - 538
  • [3] Comparison of Bootstrap Confidence Interval Methods for GSCA Using a Monte Carlo Simulation
    Jung, Kwanghee
    Lee, Jaehoon
    Gupta, Vibhuti
    Cho, Gyeongcheol
    [J]. FRONTIERS IN PSYCHOLOGY, 2019, 10
  • [4] The effect of Monte Carlo approximation on coverage error of double-bootstrap confidence intervals
    Lee, SMS
    Young, GA
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 : 353 - 366
  • [5] Comparison of Monte Carlo and bootstrap analyses for residual life and confidence interval
    Husnain, M. M. N.
    Akramin, M. R. M.
    Shaari, M. S.
    Takahashi, Akiyuki
    Bashiri, Abdullateef H.
    Alshoaibi, Abdulnaser M.
    [J]. MATERIALS SCIENCE-POLAND, 2023, 41 (01) : 15 - 26
  • [6] Bootstrap-based techniques for computing confidence intervals in Monte Carlo system reliability evaluation
    Rocco, CM
    Zio, E
    [J]. ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 2005 PROCEEDINGS, 2005, : 303 - 307
  • [7] Confidence intervals through sequential Monte Carlo
    Silva, Ivair R.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 105 : 112 - 124
  • [8] MONTE-CARLO CONFIDENCE-INTERVALS
    BUCKLAND, ST
    [J]. BIOMETRICS, 1984, 40 (03) : 811 - 817
  • [9] Markov Chain Monte Carlo confidence intervals
    Atchade, Yves F.
    [J]. BERNOULLI, 2016, 22 (03) : 1808 - 1838
  • [10] Confidence intervals from Monte Carlo tests
    Bolviken, E
    Skovlund, E
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1996, 91 (435) : 1071 - 1078