t-Distributed Stochastic Neighbor Embedding with Inhomogeneous Degrees of Freedom

被引:7
|
作者
Kitazono, Jun [1 ]
Grozavu, Nistor [2 ]
Rogovschi, Nicoleta [3 ]
Omori, Toshiaki [1 ]
Ozawa, Seiichi [1 ]
机构
[1] Kobe Univ, Grad Sch Engn, Nada Ku, 1-1 Rokkodai Cho, Kobe, Hyogo, Japan
[2] Univ Paris 13, CNRS 7030, LIPN, UMR, 99 Av J-B Clement, F-93430 Villetaneuse, France
[3] Univ Paris 05, LIPADE, 45 Rue St Peres, F-75006 Paris, France
关键词
SNE; t-SNE; Dimensionality reduction; Degrees of freedom; DIMENSIONALITY REDUCTION;
D O I
10.1007/978-3-319-46675-0_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the dimension reduction (DR) methods for data-visualization, t-distributed stochastic neighbor embedding (t-SNE), has drawn increasing attention. t-SNE gives us better visualization than conventional DR methods, by relieving so-called crowding problem. The crowding problem is one of the curses of dimensionality, which is caused by discrepancy between high and low dimensional spaces. However, in t-SNE, it is assumed that the strength of the discrepancy is the same for all samples in all datasets regardless of ununiformity of distributions or the difference in dimensions, and this assumption sometimes ruins visualization. Here we propose a new DR method inhomogeneous t-SNE, in which the strength is estimated for each point and dataset. Experimental results show that such pointwise estimation is important for reasonable visualization and that the proposed method achieves better visualization than the original t-SNE.
引用
收藏
页码:119 / 128
页数:10
相关论文
共 50 条
  • [31] Chatter Detection Approach Based on Wavelet Synchrosqueezing and t-Distributed Stochastic Neighbor Embedding for a Turning Process
    Kuo, Ping-Huan
    Lin, Po-Lun
    Yau, Her-Terng
    IEEE SENSORS JOURNAL, 2024, 24 (07) : 9660 - 9670
  • [32] Classification of High-resolution Solar Hα Spectra Using t-distributed Stochastic Neighbor Embedding
    Verma, Meetu
    Matijevic, Gal
    Denker, Carsten
    Diercke, Andrea
    Dineva, Ekaterina
    Balthasar, Horst
    Kamlah, Robert
    Kontogiannis, Ioannis
    Kuckein, Christoph
    Pal, Partha S.
    ASTROPHYSICAL JOURNAL, 2021, 907 (01):
  • [33] Revealing Geochemical Patterns Associated with Mineralization Using t-Distributed Stochastic Neighbor Embedding and Random Forest
    Shi, Zixian
    Zuo, Renguang
    Xiong, Yihui
    Sun, Siquan
    Zhou, Bao
    MATHEMATICAL GEOSCIENCES, 2023, 55 (03) : 321 - 344
  • [34] Visualizing temporal brain-state changes for fMRI using t-distributed stochastic neighbor embedding
    Parmar, Harshit
    Nutter, Brian
    Long, Rodney
    Antani, Sameer
    Mitra, Sunanda
    JOURNAL OF MEDICAL IMAGING, 2021, 8 (04)
  • [35] Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets
    Belkina, Anna C.
    Ciccolella, Christopher O.
    Anno, Rina
    Halpert, Richard
    Spidlen, Josef
    Snyder-Cappione, Jennifer E.
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [36] Persistent-Homology-Based Microstructural Optimization of Materials Using t-Distributed Stochastic Neighbor Embedding
    Wang, Zhi-Lei
    Ogawa, Toshio
    Adachi, Yoshitaka
    ADVANCED THEORY AND SIMULATIONS, 2020, 3 (07)
  • [37] Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets
    Anna C. Belkina
    Christopher O. Ciccolella
    Rina Anno
    Richard Halpert
    Josef Spidlen
    Jennifer E. Snyder-Cappione
    Nature Communications, 10
  • [38] T-distributed Stochastic Neighbor Network for unsupervised representation learning
    Wang, Zheng
    Xie, Jiaxi
    Nie, Feiping
    Wang, Rong
    Jia, Yanyan
    Liu, Shichang
    NEURAL NETWORKS, 2024, 179
  • [39] Parametric t-Distributed Stochastic Exemplar-Centered Embedding
    Min, Martin Renqiang
    Guo, Hongyu
    Shen, Dinghan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT I, 2019, 11051 : 477 - 493
  • [40] Use of t-distributed stochastic neighbour embedding in vibrational spectroscopy
    Stevens, Francois
    Carrasco, Beatriz
    Baeten, Vincent
    Fernandez Pierna, Juan A.
    JOURNAL OF CHEMOMETRICS, 2024, 38 (04)