Almost everywhere convergence of a subsequence of logarithmic means of Fourier series on the group of 2-adic integers

被引:3
|
作者
Blahota, Istvan [1 ]
机构
[1] Coll Nyiregyhaza, Inst Math & Comp Sci, H-4400 Nyiregyhaza, Hungary
关键词
Character system; group of 2-adic integers; Fourier series; a.e; convergence; logarithmic means;
D O I
10.1515/gmj-2012-0025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the almost everywhere convergence of a special subsequence of the logarithmic means of integrable functions, I-mn f := 1/l(mn) Sigma(mn-1)(k=1) S-k f/m(n) - f -> f for every f is an element of L-1(I), where l(n) := and Sigma(n-1)(k=1) 1/k I is the group of 2-adic integers. We suppose that Sigma(infinity)(n=1) log2(m(n) - 2([log mn]) + 1)/log m(n) < infinity. It proves that t(2n) f(x) -> f(x) a.e. as n -> infinity for every f is an element of L-1(I), too.
引用
收藏
页码:417 / 425
页数:9
相关论文
共 50 条