Morphology and dynamics of Venus oxygen airglow from Venus Express/Visible and Infrared Thermal Imaging Spectrometer observations

被引:50
|
作者
Hueso, R. [1 ]
Sanchez-Lavega, A. [1 ]
Piccioni, G. [2 ]
Drossart, P. [3 ]
Gerard, J. C. [4 ]
Khatuntsev, I.
Zasova, L.
Migliorini, A. [2 ]
机构
[1] Univ Basque Country, Dept Fis Aplicada 1, ETS Ingenieros, E-48013 Bilbao, Spain
[2] INAF IASF Roma, Ist Astrofis Spaziale & Fis Cosm, I-00133 Rome, Italy
[3] Univ Paris Diderot, Observ Paris, Lab Etudes Spatiales & Instrumentat Astrophys, CNRS,UPMC, F-92195 Meudon, France
[4] Univ Liege, Lab Phys Atmospher & Planetaire, B-4000 Liege, Belgium
基金
美国国家卫生研究院;
关键词
D O I
10.1029/2008JE003081
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Images obtained by the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS)-M channel instrument onboard Venus Express have been used to retrieve maps and apparent motions of the O-2 ((1)Delta) infrared nightglow on Venus at 1.27 mu m. The nightglow distribution is highly inhomogeneous with the regions of brightest emission generally located at low latitudes near the midnight meridian. Unexpectedly some orbits show also intense airglow activity over the south polar region. The spatially resolved airglow is spectacularly variable not only in its morphology and intensity but also in the apparent motions of the airglow small- and large-scale structures. Visual tracking of the bright features allowed to obtain mean zonal and meridional motions related to the subsolar to antisolar circulation. The zonal velocity is dominated by an intense prograde jet (contrary to the retrograde planetary rotation) from dawn to midnight extending up to 22 hours in local time with lower velocities and reversed sign from dusk. Typical zonal velocities range between +60 (prograde) to -50 (retrograde) m/s, whereas most meridional velocities range from -20 (poleward) to +100 m/s (equatorward) with an average meridional circulation of +20 m/s toward low latitudes. The brightest small- scale (similar to 100 km) features appear correlated with locations of apparent convergence which may be a signature of compression and downwelling, whereas this is not evident for the largescale structures suggesting slow subsidence over large areas mixed with horizontal motions. We argue that part of the tracked motions are representative of real motions at the mesosphere over an altitude range of 95-107 km.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] The relationship between mesoscale circulation and cloud morphology at the upper cloud level of Venus from VMC/Venus Express
    Patsaeva, M. V.
    Khatuntsev, I. V.
    Patsaev, D. V.
    Titov, D. V.
    Ignatiev, N. I.
    Markiewicz, W. J.
    Rodin, A. V.
    PLANETARY AND SPACE SCIENCE, 2015, 113 : 100 - 108
  • [32] HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by Solar Occultation at Infrared spectrometer on board Venus Express
    Fedorova, A.
    Korablev, O.
    Vandaele, A. -C.
    Bertaux, J. -L.
    Belyaev, D.
    Mahieux, A.
    Neefs, E.
    Wilquet, W. V.
    Drummond, R.
    Montmessin, F.
    Villard, E.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2008, 113
  • [33] HE 584-A AIRGLOW EMISSION FROM VENUS - MARINER-10 OBSERVATIONS
    KUMAR, S
    BROADFOOT, AL
    GEOPHYSICAL RESEARCH LETTERS, 1975, 2 (08) : 357 - 360
  • [34] Oxygen airglow emission on Venus and Mars as seen by VIRTIS/VEX and OMEGA/MEX imaging spectrometers
    Migliorini, A.
    Altieri, F.
    Zasova, L.
    Piccioni, G.
    Bellucci, G.
    Cardesin Moinelo, A.
    Drossart, P.
    D'Aversa, E.
    Carrozzo, F. G.
    Gondet, B.
    Bibring, J. -P.
    PLANETARY AND SPACE SCIENCE, 2011, 59 (10) : 981 - 987
  • [35] Bimodal aerosol distribution in Venus' upper haze from joint SPICAV-UV and -IR observations on Venus Express
    Luginin, M.
    Fedorova, A.
    Belyaev, D.
    Montmessin, F.
    Korablev, O.
    Bertaux, J. -l.
    ICARUS, 2024, 409
  • [36] Venus Atmospheric Dynamics at Two Altitudes: Akatsuki and Venus Express Cloud Tracking, Ground-Based Doppler Observations and Comparison with Modelling
    Machado, Pedro
    Widemann, Thomas
    Peralta, Javier
    Gilli, Gabriella
    Espadinha, Daniela
    Silva, Jose E.
    Brasil, Francisco
    Ribeiro, Jose
    Goncalves, Ruben
    ATMOSPHERE, 2021, 12 (04)
  • [37] Cloud level winds from the Venus Express Monitoring Camera imaging
    Khatuntsev, I. V.
    Patsaeva, M. V.
    Titov, D. V.
    Ignatiev, N. I.
    Turin, A. V.
    Limaye, S. S.
    Markiewicz, W. J.
    Almeida, M.
    Roatsch, Th.
    Moissl, R.
    ICARUS, 2013, 226 (01) : 140 - 158
  • [38] Winds in the Middle Cloud Deck From the Near-IR Imaging by the Venus Monitoring Camera Onboard Venus Express
    Khatuntsev, I. V.
    Patsaeva, M. V.
    Titov, D. V.
    Ignatiev, N. I.
    Turin, A. V.
    Fedorova, A. A.
    Markiewicz, W. J.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2017, 122 (11) : 2312 - 2327
  • [39] Water vapor near Venus cloud tops from VIRTIS-H/Venus express observations 2006-2011
    Cottini, V.
    Ignatiev, N. I.
    Piccioni, G.
    Drossart, P.
    PLANETARY AND SPACE SCIENCE, 2015, 113 : 219 - 225
  • [40] Determination of the Venus eddy diffusion profile from CO and CO2 profiles using SOIR/Venus Express observations
    Mahieux, A.
    Yelle, R., V
    Yoshida, N.
    Robert, S.
    Piccialli, A.
    Nakagawa, H.
    Kasaba, Y.
    Mills, F. P.
    Vandaele, A. C.
    ICARUS, 2021, 361