Detection by Detections: Non-parametric Detector Adaptation for a Video

被引:0
|
作者
Wang, Xiaoyu [1 ]
Hua, Gang
Han, Tony X. [1 ]
机构
[1] Univ Missouri, Dept Elect & Comp Engn, Columbia, MO 65211 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an approach to improving the detection results of a generic offline trained detector on a specific video. Our method does not leverage visual tracking as most detection by tracking methods do. Instead, the proposed detection by detections approach can serve as a more confident initialization for detection by tracking methods. Different from other supervised detector adaptation methods, we constrain the task to videos and no supervised labels for the target video are required for the adaptation; we intend to fill the gap between detection by tracking and pure detection by frames. As a non-parametric detector adaptation method, confident detections are collected to re-rank and to group other detections. We focus on methods with high precision detection results since it is necessitated in real application. Extensive experiments with two state-of-the-art detectors demonstrate the efficacy of our approach.
引用
收藏
页码:350 / 357
页数:8
相关论文
共 50 条
  • [41] A non-parametric approach to anomaly detection in hyperspectral images
    Veracini, Tiziana
    Matteoli, Stefania
    Diani, Marco
    Corsini, Giovanni
    de Ceglie, Sergio U.
    [J]. IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVI, 2010, 7830
  • [42] Change-point detection with non-parametric regression
    Horváth, L
    Kokoszka, P
    [J]. STATISTICS, 2002, 36 (01) : 9 - 31
  • [43] CLOUD: a non-parametric detection test for microbiome outliers
    Emmanuel Montassier
    Gabriel A. Al-Ghalith
    Benjamin Hillmann
    Kimberly Viskocil
    Amanda J. Kabage
    Christopher E. McKinlay
    Michael J. Sadowsky
    Alexander Khoruts
    Dan Knights
    [J]. Microbiome, 6
  • [44] Active balance of humanoids with foot positioning compensation and non-parametric adaptation
    Liu, Chengju
    Xu, Tao
    Wang, Danwei
    Chen, Qijun
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 75 : 297 - 309
  • [45] NON-PARAMETRIC STRINGS
    GAMBINI, R
    TRIAS, A
    [J]. PHYSICS LETTERS B, 1988, 200 (03) : 280 - 284
  • [46] Non-parametric Econometrics
    Leong, Chee Kian
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2012, 175 : 1072 - 1072
  • [47] Non-Parametric Parametricity
    Neis, Georg
    Dreyer, Derek
    Rossberg, Andreas
    [J]. ACM SIGPLAN NOTICES, 2009, 44 (8-9) : 135 - 148
  • [48] Video retrieval method using non-parametric based motion classification
    Kim, N. W.
    Song, H. Y.
    [J]. IMAGE ANALYSIS AND RECOGNITION, PROCEEDINGS, 2008, 5112 : 281 - 293
  • [49] DepthTransfer: Depth Extraction from Video Using Non-Parametric Sampling
    Karsch, Kevin
    Liu, Ce
    Kang, Sing Bing
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (11) : 2144 - 2158
  • [50] Non-Parametric Parametricity
    Nei, Georg
    Dreyer, Derek
    Rossberg, Andreas
    [J]. ICFP'09: PROCEEDINGS OF THE 2009 ACM SIGPLAN INTERNATIONAL CONFERENCE ON FUNCTIONAL PROGRAMMING, 2009, : 135 - 148