Adaptable Map Matching Using PF-net for Pedestrian Indoor Localization

被引:13
|
作者
Zhang, Lijia [1 ]
Cheng, Mo [1 ]
Xiao, Zhuoling [1 ,2 ]
Zhou, Liang [1 ]
Zhou, Jun [1 ]
机构
[1] Univ Elect Sci & Technol China, Dept Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Univ Oxford, Dept Comp Sci, Oxford OX1 2JD, England
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Trajectory; Euclidean distance; Hidden Markov models; Data models; Machine learning; Training; Indoor localization; map matching; particle filter; deep learning;
D O I
10.1109/LCOMM.2020.2984036
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
map matching has played a crucial role in technologies related to indoor positioning. Conventional map matching algorithms based on particle filter (PF) have some limitations, such as the limited use of map information, poor generalization and low precision. To solve these problems, we propose an adaptable particle filter network (AdaPFnet), a novel map matching technique that integrates particle filter algorithm into a neural network. AdaPFnet uses local views of particles to represent particles so that the map information about location can be learned sufficiently through a neural network. To demonstrate the performance of the model, it has conducted extensive experiments using 1540 real-world data. The results show that AdaPFnet outperforms PF by up to 21% and remains a strong adaptability for different environments.
引用
收藏
页码:1437 / 1440
页数:4
相关论文
共 50 条
  • [11] Focusing Matching Localization Method Based on Indoor Magnetic Map
    Liu, Gong-Xu
    Shi, Ling-Feng
    Chen, Sen
    Wu, Zhong-Guo
    IEEE SENSORS JOURNAL, 2020, 20 (17) : 10012 - 10020
  • [12] Location Fixing and Fingerprint Matching Fingerprint Map Construction for Indoor Localization
    Alakhras, Marwan
    Hussein, Mousa
    Oussalah, Mourad
    JOURNAL OF SENSORS, 2020, 2020
  • [13] Visual map matching and localization using a global feature map
    Pink, Oliver
    2008 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, VOLS 1-3, 2008, : 1341 - 1347
  • [14] An indoor fusion localization method using pedestrian dead reckoning
    Zhao Q.
    Luan P.
    Wang H.
    Lv H.
    Feng G.
    Tang M.
    Zhao, Qian (zhaoqian@hrbcu.edu.cn), 2018, Totem Publishers Ltd (14) : 2343 - 2353
  • [15] Indoor Pedestrian Localization Using iBeacon and Improved Kalman Filter
    Sung, Kwangjae
    Lee, Dong Kyu 'Roy'
    Kim, Hwangnam
    SENSORS, 2018, 18 (06)
  • [16] HTrack: An Efficient Heading-Aided Map Matching for Indoor Localization and Tracking
    Wu, Yongfeng
    Chen, Pan
    Gu, Fuqiang
    Zheng, Xiaoping
    Shang, Jianga
    IEEE SENSORS JOURNAL, 2019, 19 (08) : 3100 - 3110
  • [17] Indoor Localization Based on VIO System and Three-Dimensional Map Matching
    Zhang, Jitong
    Ren, Mingrong
    Wang, Pu
    Meng, Juan
    Mu, Yuman
    SENSORS, 2020, 20 (10)
  • [18] Indoor localization using subspace matching: An experimental evaluation
    Tsuji, Hiroyuki
    Kikuchi, Shohei
    Kaveh, Mostafa
    2006 IEEE SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP PROCEEDINGS, VOLS 1 AND 2, 2006, : 541 - +
  • [19] Indoor Localization Scheme Using Magnetic Map for Smartphones
    Ling-Feng Shi
    Rui He
    Bao-Lin Feng
    Wireless Personal Communications, 2022, 122 : 1329 - 1347
  • [20] Indoor Localization Scheme Using Magnetic Map for Smartphones
    Shi, Ling-Feng
    He, Rui
    Feng, Bao-Lin
    WIRELESS PERSONAL COMMUNICATIONS, 2022, 122 (02) : 1329 - 1347