Adaptable Map Matching Using PF-net for Pedestrian Indoor Localization

被引:13
|
作者
Zhang, Lijia [1 ]
Cheng, Mo [1 ]
Xiao, Zhuoling [1 ,2 ]
Zhou, Liang [1 ]
Zhou, Jun [1 ]
机构
[1] Univ Elect Sci & Technol China, Dept Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Univ Oxford, Dept Comp Sci, Oxford OX1 2JD, England
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Trajectory; Euclidean distance; Hidden Markov models; Data models; Machine learning; Training; Indoor localization; map matching; particle filter; deep learning;
D O I
10.1109/LCOMM.2020.2984036
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
map matching has played a crucial role in technologies related to indoor positioning. Conventional map matching algorithms based on particle filter (PF) have some limitations, such as the limited use of map information, poor generalization and low precision. To solve these problems, we propose an adaptable particle filter network (AdaPFnet), a novel map matching technique that integrates particle filter algorithm into a neural network. AdaPFnet uses local views of particles to represent particles so that the map information about location can be learned sufficiently through a neural network. To demonstrate the performance of the model, it has conducted extensive experiments using 1540 real-world data. The results show that AdaPFnet outperforms PF by up to 21% and remains a strong adaptability for different environments.
引用
收藏
页码:1437 / 1440
页数:4
相关论文
共 50 条
  • [1] Research on PF-SLAM Indoor Pedestrian Localization Algorithm Based on Feature Point Map
    Shi, Jingjing
    Ren, Mingrong
    Wang, Pu
    Meng, Juan
    MICROMACHINES, 2018, 9 (06):
  • [2] MEMS-INS Based Indoor Pedestrian Localization Using Three-Dimensional Map Matching Algorithm
    Ren M.-R.
    Meng J.
    Wang P.
    Ren, Ming-Rong (bjut_renmingrong@sohu.com), 1600, Chinese Institute of Electronics (49): : 111 - 116
  • [3] Indoor Localization by Particle Map Matching
    El Mokhtari, Karim
    Reboul, Serge
    Choquel, Jean-Bernard
    Amami, Benaissa
    Benjelloun, Mohammed
    2016 4TH IEEE INTERNATIONAL COLLOQUIUM ON INFORMATION SCIENCE AND TECHNOLOGY (CIST), 2016, : 812 - 817
  • [4] Indoor Pedestrian Navigation Fusing WLAN, INS, and Map Data Using Pattern Matching
    Sohrabi, Reza
    Fallah, Mohammad Amin
    Lahouti, Farshad
    2014 7TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2014, : 349 - 354
  • [5] A Hybrid Indoor Localization and Navigation System with Map Matching for Pedestrians Using Smartphones
    Tian, Qinglin
    Salcic, Zoran
    Wang, Kevin I-Kai
    Pan, Yun
    SENSORS, 2015, 15 (12): : 30759 - 30783
  • [6] PEDESTRIAN LOCALIZATION IN MOVING PLATFORMS USING DEAD RECKONING, PARTICLE FILTERING AND MAP MATCHING
    Bojja, Jayaprasad
    Collin, Jussi
    Sarkka, Simo
    Takala, Jarmo
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 1116 - 1120
  • [7] An Indoor Positioning System Using Pedestrian Dead Reckoning with WiFi and Map-matching Aided
    Nguyen-Huu, Khanh
    Lee, KyungHo
    Lee, Seon-Woo
    2017 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 2017,
  • [8] Pedestrian Indoor Positioning and Tracking using Smartphone Sensors, Step Detection and Map Matching Algorithm
    Ilkovicova, Lubica
    Kajanek, Pavol
    Kopacik, Alojz
    GEODETSKI LIST, 2016, 70 (01) : 1 - 24
  • [9] Indoor Localization Methods Using Dead Reckoning and 3D Map Matching
    Bojja, J.
    Kirkko-Jaakkola, M.
    Collin, J.
    Takala, J.
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2014, 76 (03): : 301 - 312
  • [10] Indoor Localization Methods Using Dead Reckoning and 3D Map Matching
    J. Bojja
    M. Kirkko-Jaakkola
    J. Collin
    J. Takala
    Journal of Signal Processing Systems, 2014, 76 : 301 - 312