Hierarchical Dynamic Power Management Using Model-Free Reinforcement Learning

被引:0
|
作者
Wang, Yanzhi [1 ]
Triki, Maryam
Lin, Xue [1 ]
Ammari, Ahmed C.
Pedram, Massoud [1 ]
机构
[1] Univ So Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
关键词
Dynamic power management; reinforcement learning; Bayesian classification;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Model-free reinforcement learning (RL) has become a promising technigue for designing a robust dynamic power management (DPM) framework that can cope with variations and uncertainties that emanate from hardware and application characteristics. Moreover, the potentially significant benefit of performing application-level scheduling as part of the system-level power management should be harnessed. This paper presents an architecture for hierarchical DPM in an embedded system composed of a processor chip and connected 110 devices (which are called system components.) The goal is to facilitate saving in the system component power consumption, which tends to dominate the total power consumption. The proposed (online) adaptive DPM technique consists of two layers: an RL-based component-level local power manager (LPM) and a system-level global power manager (GPM). The LPM performs component power and latency optimization. It employs temporal difference learning on semi-Markov decision process (SMDP) for model-free RL, and it is specifically optimized for an environment in which multiple (heterogeneous) types of applications can run in the embedded system. The GPM interacts with the CPU scheduler to perform effective application-level scheduling, thereby, enabling the LPM to do even more component power optimizations. In this hierarchical DPM framework power and latency tradeoffs of each type of application can be precisely controlled based on a user-defined parameter. Experiments show that the amount of average power saving is up to 31.1% compared to existing approaches.
引用
下载
收藏
页码:170 / 177
页数:8
相关论文
共 50 条
  • [31] Model-Free Preference-Based Reinforcement Learning
    Wirth, Christian
    Fuernkranz, Johannes
    Neumann, Gerhard
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 2222 - 2228
  • [32] Constrained model-free reinforcement learning for process optimization
    Pan, Elton
    Petsagkourakis, Panagiotis
    Mowbray, Max
    Zhang, Dongda
    del Rio-Chanona, Ehecatl Antonio
    COMPUTERS & CHEMICAL ENGINEERING, 2021, 154
  • [33] Discrete-time dynamic graphical games: model-free reinforcement learning solution
    Abouheaf M.I.
    Lewis F.L.
    Mahmoud M.S.
    Mikulski D.G.
    Control theory technol., 1 (55-69): : 55 - 69
  • [34] Model-Free μ Synthesis via Adversarial Reinforcement Learning
    Keivan, Darioush
    Havens, Aaron
    Seiler, Peter
    Dullerud, Geir
    Hu, Bin
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3335 - 3341
  • [35] An adaptive clustering method for model-free reinforcement learning
    Matt, A
    Regensburger, G
    INMIC 2004: 8TH INTERNATIONAL MULTITOPIC CONFERENCE, PROCEEDINGS, 2004, : 362 - 367
  • [36] Model-Free Reinforcement Learning for Mean Field Games
    Mishra, Rajesh
    Vasal, Deepanshu
    Vishwanath, Sriram
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (04): : 2141 - 2151
  • [37] Counterfactual Credit Assignment in Model-Free Reinforcement Learning
    Mesnard, Thomas
    Weber, Theophane
    Viola, Fabio
    Thakoor, Shantanu
    Saade, Alaa
    Harutyunyan, Anna
    Dabney, Will
    Stepleton, Tom
    Heess, Nicolas
    Guez, Arthur
    Moulines, Eric
    Hutter, Marcus
    Buesing, Lars
    Munos, Remi
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [38] Discrete-time dynamic graphical games:model-free reinforcement learning solution
    Mohammed I.ABOUHEAF
    Frank L.LEWIS
    Magdi S.MAHMOUD
    Dariusz G.MIKULSKI
    Control Theory and Technology, 2015, 13 (01) : 55 - 69
  • [39] Covariance matrix adaptation for model-free reinforcement learning
    Adaptation de la matrice de covariance pour l'apprentissage par renforcement direct
    2013, Lavoisier, 14 rue de Provigny, Cachan Cedex, F-94236, France (27)
  • [40] Driving in Dense Traffic with Model-Free Reinforcement Learning
    Saxena, Dhruv Mauria
    Bae, Sangjae
    Nakhaei, Alireza
    Fujimura, Kikuo
    Likhachev, Maxim
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 5385 - 5392