Dynamic parameter estimation of bolted assemblies

被引:0
|
作者
Piscan, I. [1 ]
Janssens, T. [2 ]
Pupaza, C. [1 ]
机构
[1] Univ Politehn Bucuresti, Machines & Mfg Syst Dept, Splaiul Independentei 313, Bucharest 060042, Romania
[2] Katholieke Univ Leuven, Dept Engn Mech, B-3001 Heverlee, Belgium
关键词
STRUCTURAL JOINTS; NONLINEAR JOINT; STIFFNESS; IDENTIFICATION;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, a parameter estimation model for identifying bolted assemblies is proposed using frequency response functions (FRFs). A dynamic model of structures with fixed joints is developed by taking into consideration the contact stiffness, contact damping and bolt preload which influences the dynamic behaviour of structures. The stiffness of any mechanical structure as well as the amount of damping and the presence of nonlinearities are mainly determined by the bolted joints. The dynamic model can accurately reflect the dynamic characteristics of the joints. Based on the state space representation of a multi mass-spring-damper system, a parameter identification models are proposed in order to identify the dynamic model parameters of the joints using experimentally obtained test data of the whole structure including the joints. The dynamic tests reveal the influence of the bolt pretension on the FRFs, contributing to changes both in frequency and amplitude. The effectiveness and accuracy of the FEM dynamic model have also been validated through experimental results. The development of the model assures a theoretical base for the dynamic modelling of bolted assemblies, e. g. being part of machine tool structures.
引用
收藏
页码:3461 / 3474
页数:14
相关论文
共 50 条
  • [21] Dynamic parameter estimation of a MacPherson strut suspension
    Korea Military Acad, Seoul, Korea, Republic of
    Veh Syst Dyn, 2 (169-184):
  • [22] Online estimation of dynamic Bayesian network parameter
    Cho, Hyun C.
    Fadali, Sami M.
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 3363 - +
  • [23] Dynamic simulation and parameter estimation in river streams
    Karadurmus, E
    Berber, R
    ENVIRONMENTAL TECHNOLOGY, 2004, 25 (04) : 471 - 479
  • [24] Parameter estimation in a dynamic model of a copolymerization process
    Bindlish, R
    Rawlings, JB
    Young, RE
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 2424 - 2428
  • [25] Parameter Estimation of Dynamic Beer Fermentation Models
    Zamudio Lara, Jesus Miguel
    Dewasme, Laurent
    Escoto, Hector Hernandez
    Vande Wouwer, Alain
    FOODS, 2022, 11 (22)
  • [26] Parameter estimation techniques for helicopter dynamic modelling
    Li, Ping
    Postlethwaite, Ian
    Turner, Matthew
    2007 AMERICAN CONTROL CONFERENCE, VOLS 1-13, 2007, : 342 - 347
  • [27] Parameter estimation for dynamic model of the financial system
    Novotna, Veronika
    Stepankova, Vladena
    18TH INTERNATIONAL CONFERENCE ENTERPRISE AND COMPETITIVE ENVIRONMENT, 2015, : 628 - 635
  • [28] Compressing measurements in quantum dynamic parameter estimation
    Magesan, Easwar
    Cooper, Alexandre
    Cappellaro, Paola
    PHYSICAL REVIEW A, 2013, 88 (06):
  • [29] Dynamic least squares parameter estimation of structures
    Yap, KC
    Zimmerman, DC
    IMAC-XVIII: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2, PROCEEDINGS, 2000, 4062 : 1513 - 1519
  • [30] Parameter estimation in nonlinear systems with dynamic noise
    Stollenwerk, N
    INTEGRATIVE SYSTEMS APPROACHES TO NATURAL AND SOCIAL DYNAMICS, 2001, : 95 - 101