Dielectric Mismatch Mediates Carrier Mobility in Organic-Intercalated Layered TiS2

被引:68
|
作者
Wan, Chunlei [1 ,2 ]
Kodama, Yumi [2 ]
Kondo, Mami [2 ]
Sasai, Ryo [3 ]
Qian, Xin [4 ]
Gu, Xiaokun [4 ]
Koga, Kenji [5 ]
Yabuki, Kazuhisa [5 ]
Yang, Ronggui [4 ]
Koumoto, Kunihito [2 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[2] Nagoya Univ, Grad Sch Engn, Nagoya, Aichi 4648603, Japan
[3] Shimane Univ, Interdisciplinary Grad Sch Sci & Engn, Matsue, Shimane 6908304, Japan
[4] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
[5] KOBELCO Res Inst, Kobe, Hyogo 6512271, Japan
基金
美国国家科学基金会;
关键词
Titanium disulfide; transition-metal dichalcogenide; thermoelectrics; hybrid materials; dielectric mismatch; ULTRALOW THERMAL-CONDUCTIVITY; HALL-MOBILITY; SCATTERING; COMPLEXES; CONSTANT; SULFIDES; GRAPHENE; SRTIO3; FILMS; MOS2;
D O I
10.1021/acs.nanolett.5b01013
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The dielectric constant is a key parameter that determines both optical and electronic properties of materials. It is desirable to tune electronic properties though dielectric engineering approach. Here, we present a systematic approach to tune carrier mobilities of hybrid inorganic/organic materials where layered two-dimensional transition-metal dichalcogenide TiS2 is electrochemically intercalated with polar organic molecules. By manipulating the dielectric mismatch using polar organic molecules with different dielectric constants, ranging from 10 to 41, the electron mobility of the TiS2 layers was changed three times due to the dielectric screening of the Coulombimpurity scattering processes. Both the overall thermal conductivity and the lattice thermal conductivity were also found to decrease with an increasing dielectric mismatch. The enhanced electrical mobility along with the decreased thermal conductivity together gave rise to a significantly improved thermoelectric figure of merit of the hybrid inorganic/organic materials at room temperature, which might find applications in wearable electronics.
引用
收藏
页码:6302 / 6308
页数:7
相关论文
共 50 条
  • [21] THERMODYNAMIC STUDY OF SODIUM-INTERCALATED TAS2 AND TIS2
    NAGELBERG, AS
    WORRELL, WL
    JOURNAL OF SOLID STATE CHEMISTRY, 1979, 29 (03) : 345 - 354
  • [22] Chemical bondings around intercalated Cr and Fe atoms in TiS2
    Kim, YS
    Li, J
    Tanaka, I
    Koyama, Y
    Adachi, H
    MATERIALS TRANSACTIONS JIM, 2000, 41 (08): : 1088 - 1091
  • [23] Unstable single-layered colloidal TiS2 nanodisks
    Park, Kang Hyun
    Choi, Jaewon
    Kim, Hae Jin
    Oh, Dong-Hwa
    Ahn, Joung Real
    Son, Seung Uk
    SMALL, 2008, 4 (07) : 945 - 950
  • [24] POINT-CONTACT SPECTROSCOPY OF LAYERED TIS2 CRYSTAL
    UEDA, Y
    MARUSHITA, M
    NEGISHI, H
    SASAKI, M
    INOUE, M
    SOLID STATE COMMUNICATIONS, 1987, 63 (02) : 173 - 175
  • [25] METAL-DIELECTRIC TRANSITION IN LAYERED DICHALCOGENIDES OF TRANSITION-METALS (TIS2, TISE2)
    SILIN, AP
    FIZIKA TVERDOGO TELA, 1978, 20 (11): : 3436 - 3439
  • [26] Synthesis of organic-intercalated Zn/Fe layered double hydroxides from the electroplating wastewater
    Ruan, Xiuxiu
    Huang, Song
    Chen, Hua
    PROGRESS IN ENVIRONMENTAL SCIENCE AND ENGINEERING, PTS 1-4, 2013, 610-613 : 538 - 541
  • [27] Stacking transformation and defect creation in Cs intercalated TiS2 single crystals
    Remškar, M.
    Popović, A.
    Starnberg, H.I.
    Surface Science, 1999, 430 (01): : 199 - 205
  • [28] Morphology and Electronic Structure of Sn-Intercalated TiS2(0001) Layers
    Yuhara, Junji
    Isobe, Naoki
    Nishino, Kazuki
    Fujii, Yuya
    Lap Hong Chan
    Araidai, Masaaki
    Nakatake, Masashi
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (36): : 22293 - 22298
  • [29] OPTICAL AND ELECTRICAL-TRANSPORT STUDIES ON LITHIUM-INTERCALATED TIS2
    JULIEN, C
    SAMARAS, I
    GOROCHOV, O
    GHORAYEB, AM
    PHYSICAL REVIEW B, 1992, 45 (23): : 13390 - 13395
  • [30] Stacking transformation and defect creation in Cs intercalated TiS2 single crystals
    Remskar, M
    Popovic, A
    Starnberg, HI
    SURFACE SCIENCE, 1999, 430 (1-3) : 199 - 205