Pedestrian Segmentation in Infrared Images Based on Local Autocorrelation

被引:0
|
作者
Wu, Tao [1 ,2 ]
Zeng, Shaogeng [2 ]
Yang, Junjie [1 ,2 ]
机构
[1] Guangdong Engn & Technol Dev Ctr E learning, 29 Cunjin Rd, Zhanjiang 524048, Peoples R China
[2] Lingnan Normal Univ, Sch Informat Sci & Technol, 29 Cunjin Rd, Zhanjiang 524048, Peoples R China
关键词
Image thresholding; image segmentation; infrared image processing; Moran's I; feature fusion;
D O I
10.1117/12.2243727
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In order to select the optimal threshold for pedestrian segmentation in infrared images, a novel algorithm based on local autocorrelation is proposed. The algorithm calculates the local autocorrelation feature of a given image. Next, it constructs a new feature matrix based on this spatial correlation and the original grayscale. Then, it obtains an automatic threshold related with local combined features using the geometrical method based on histogram analysis. Finally, it extracts the image region of pedestrian and yields the binary result. It is indicated by the experiments that, the proposed method performs good result of pedestrian region extraction and thresholding, and it is reasonable and effective.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Pedestrian detection in infrared images
    Guo, Yong-Cai
    Hu, Rui-Guang
    Gao, Chao
    Chongqing Daxue Xuebao/Journal of Chongqing University, 2009, 32 (09): : 1070 - 1073
  • [12] Pedestrian detection in infrared images
    Bertozzi, M
    Broggi, A
    Grisleri, P
    Graf, T
    Meinecke, M
    IEEE IV2003: INTELLIGENT VEHICLES SYMPOSIUM, PROCEEDINGS, 2003, : 662 - 667
  • [13] Symmetry Information Based Fuzzy Clustering for Infrared Pedestrian Segmentation
    Bai, Xiangzhi
    Wang, Yingfan
    Liu, Haonan
    Guo, Sheng
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018, 26 (04) : 1946 - 1959
  • [14] Adaptive Pedestrian Detection in Infrared Images using Background Subtraction and Local Thresholding
    Soundrapandiyan, Rajkumar
    Mouli, Chandra P. V. S. S. R.
    SECOND INTERNATIONAL SYMPOSIUM ON COMPUTER VISION AND THE INTERNET (VISIONNET'15), 2015, 58 : 706 - 713
  • [15] Histograms of local intensity differences for pedestrian classification in far-infrared images
    Kim, D. S.
    Kim, M.
    Kim, B. S.
    Lee, K. H.
    ELECTRONICS LETTERS, 2013, 49 (04) : 258 - 260
  • [16] Saliency-Based Pedestrian Detection in Far Infrared Images
    Cai, Yingfeng
    Liu, Ze
    Wang, Hai
    Sun, Xiaoqiang
    IEEE ACCESS, 2017, 5 : 5013 - 5019
  • [17] An infrared pedestrian detection method based on segmentation and domain adaptation learning
    Zhang, Jianlong
    Liu, Chishuai
    Wang, Bin
    Chen, Chen
    He, Jianhui
    Zhou, Yang
    Li, Ji
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 99
  • [18] Pedestrian detection in far infrared images
    Olmeda, Daniel
    Premebida, Cristiano
    Nunes, Urbano
    Maria Armingol, Jose
    de la Escalera, Arturo
    INTEGRATED COMPUTER-AIDED ENGINEERING, 2013, 20 (04) : 347 - 360
  • [19] Reconstructed Saliency for Infrared Pedestrian Images
    Li, Lu
    Zhou, Fugen
    Zheng, Yu
    Bai, Xiangzhi
    IEEE ACCESS, 2019, 7 : 42652 - 42663
  • [20] Pedestrian Detection in Infrared Video Images
    Wu, Di
    Liu, Wei
    PROCEEDINGS OF THE 2015 6TH INTERNATIONAL CONFERENCE ON MANUFACTURING SCIENCE AND ENGINEERING, 2016, 32 : 349 - 352