The number of integer points in a family of anisotropically expanding domains

被引:2
|
作者
Kordyukov, Yuri A. [1 ]
Yakovlev, Andrey A. [1 ]
机构
[1] Russian Acad Sci, Inst Math, Ufa 450008, Russia
来源
MONATSHEFTE FUR MATHEMATIK | 2015年 / 178卷 / 01期
关键词
Integer points; Anisotropically expanding domains; Convexity; Adiabatic limits; Foliation; Laplace operator; FOURIER-TRANSFORM; INDICATOR FUNCTION; ADIABATIC LIMITS;
D O I
10.1007/s00605-015-0787-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the remainder in the asymptotic formula for the number of integer points in a family of bounded domains in the Euclidean space, which remain unchanged along some linear subspace and expand in the directions, orthogonal to this subspace. We prove some estimates for the remainder, imposing additional assumptions on the boundary of the domain. We study the average remainder estimates, where the averages are taken over rotated images of the domain by a subgroup of the group of orthogonal transformations of the Euclidean space . Using these results, we improve the remainder estimate in the adiabatic limit formula for the eigenvalue distribution function of the Laplace operator associated with a bundle-like metric on a compact manifold equipped with a Riemannian foliation in the particular case when the foliation is a linear foliation on the torus and the metric is the standard Euclidean metric on the torus.
引用
收藏
页码:97 / 111
页数:15
相关论文
共 50 条
  • [21] A QUASI-OPTIMAL FACTORIZATION PRECONDITIONER FOR PERIODIC SCHRODINGER EIGENSTATES IN ANISOTROPICALLY EXPANDING DOMAINS
    Stamm, Benjamin
    Theisen, Lambert
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (05) : 2508 - 2537
  • [22] Quadratic estimates for the number of integer points in convex bodies
    Colzani L.
    Rocco I.
    Travaglini G.
    Rendiconti del Circolo Matematico di Palermo, 2005, 54 (2) : 241 - 252
  • [23] ON THE NUMBER OF PRIMITIVE LATTICE POINTS IN PLANE DOMAINS
    MOROZ, BZ
    MONATSHEFTE FUR MATHEMATIK, 1985, 99 (01): : 37 - 42
  • [24] NUMBER OF COLLINEARITIES OF 3 POINTS TAKEN FROM INTEGER LATTICE POINTS OF A SQUARE
    BONNICE, WE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A40 - A40
  • [25] MAXIMAL RANKS AND INTEGER POINTS ON A FAMILY OF ELLIPTIC CURVES
    Walsh, P. G.
    GLASNIK MATEMATICKI, 2009, 44 (01) : 83 - 87
  • [26] Plasma instabilities in an anisotropically expanding geometry
    Romatschke, Paul
    Rebhan, Anton
    PHYSICAL REVIEW LETTERS, 2006, 97 (25)
  • [27] A FASTER ALGORITHM FOR COUNTING THE INTEGER POINTS NUMBER IN Δ-MODULAR POLYHEDRA
    Gribanov, D., V
    Malyshev, D. S.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (02): : 613 - 626
  • [28] GRAVITOMAGNETIC INSTABILITIES IN ANISOTROPICALLY EXPANDING FLUIDS
    Kleidis, Kostas
    Kuiroukidis, Apostolos
    Papadopoulos, Demetrios B.
    Vlahos, Loukas
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (27-28): : 4467 - 4484
  • [29] Anisotropically expanding universe in massive gravity
    Do, Tuan Q.
    Kao, W. F.
    PHYSICAL REVIEW D, 2013, 88 (06):
  • [30] On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains
    Popov, D. A.
    IZVESTIYA MATHEMATICS, 2011, 75 (05) : 1007 - 1045