Physics-Informed Data-Driven Prediction of 2D Normal Strain Field in Concrete Structures

被引:4
|
作者
Pereira, Mauricio [1 ]
Glisic, Branko [1 ]
机构
[1] Princeton Univ, Dept Civil & Environm Engn, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
predictive modeling; creep and shrinkage; structural health monitoring; long-term structural behavior; physics-informed machine learning; optical fibers; fiber bragg grating; DRYING SHRINKAGE; CREEP;
D O I
10.3390/s22197190
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Concrete exhibits time-dependent long-term behavior driven by creep and shrinkage. These rheological effects are difficult to predict due to their stochastic nature and dependence on loading history. Existing empirical models used to predict rheological effects are fitted to databases composed largely of laboratory tests of limited time span and that do not capture differential rheological effects. A numerical model is typically required for application of empirical constitutive models to real structures. Notwithstanding this, the optimal parameters for the laboratory databases are not necessarily ideal for a specific structure. Data-driven approaches using structural health monitoring data have shown promise towards accurate prediction of long-term time-dependent behavior in concrete structures, but current approaches require different model parameters for each sensor and do not leverage geometry and loading. In this work, a physics-informed data-driven approach for long-term prediction of 2D normal strain field in prestressed concrete structures is introduced. The method employs a simplified analytical model of the structure, a data-driven model for prediction of the temperature field, and embedding of neural networks into rheological time-functions. In contrast to previous approaches, the model is trained on multiple sensors at once and enables the estimation of the strain evolution at any point of interest in the longitudinal section of the structure, capturing differential rheological effects.
引用
收藏
页数:20
相关论文
共 50 条
  • [22] Data-driven physics-informed neural networks: A digital twin perspective
    Yang, Sunwoong
    Kim, Hojin
    Hong, Yoonpyo
    Yee, Kwanjung
    Maulik, Romit
    Kang, Namwoo
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 428
  • [23] Multifidelity deep operator networks for data-driven and physics-informed problems
    Howard A.A.
    Perego M.
    Karniadakis G.E.
    Stinis P.
    Journal of Computational Physics, 2023, 493
  • [24] Data-driven physics-informed descriptors of cation ordering in multicomponent perovskite oxides
    Peng, Jiayu
    Damewood, James
    Gomez-Bombarelli, Rafael
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (05):
  • [25] Weather forecasting based on data-driven and physics-informed reservoir computing models
    Yslam D. Mammedov
    Ezutah Udoncy Olugu
    Guleid A. Farah
    Environmental Science and Pollution Research, 2022, 29 : 24131 - 24144
  • [26] Physics-informed deep learning for data-driven solutions of computational fluid dynamics
    Solji Choi
    Ikhwan Jung
    Haeun Kim
    Jonggeol Na
    Jong Min Lee
    Korean Journal of Chemical Engineering, 2022, 39 : 515 - 528
  • [27] Physics-informed neural networks for data-driven simulation: Advantages, limitations, and opportunities
    de la Mata, Felix Fernandez
    Gijon, Alfonso
    Molina-Solana, Miguel
    Gomez-Romero, Juan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 610
  • [28] Data-Driven Optimal Power Flow: A Physics-Informed Machine Learning Approach
    Lei, Xingyu
    Yang, Zhifang
    Yu, Juan
    Zhao, Junbo
    Gao, Qian
    Yu, Hongxin
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (01) : 346 - 354
  • [29] Physics-informed neural networks for analysis of 2D thin-walled structures
    Gu, Yan
    Zhang, Chuanzeng
    Golub, Mikhail, V
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2022, 145 : 161 - 172
  • [30] Development of a data-driven simulation framework using physics-informed neural network
    Chae, Young Ho
    Kim, Hyeonmin
    Bang, Jungjin
    Seong, Poong Hyun
    ANNALS OF NUCLEAR ENERGY, 2023, 189