Treatment with a coinducer of the heat shock response delays muscle denervation in the SOD1-G93A mouse model of amyotrophic lateral sclerosis

被引:30
|
作者
Kalmar, Bernadett [1 ]
Edet-Amana, Emem [1 ]
Greensmith, Linda [1 ]
机构
[1] UCL, UCL Inst Neurol, London WC1N 3BG, England
来源
AMYOTROPHIC LATERAL SCLEROSIS | 2012年 / 13卷 / 04期
关键词
ALS; neuromuscular junction; muscle denervation; heat shock protein; synaptic enzyme; ChAT; AChE; DISEASE PROGRESSION; SKELETAL-MUSCLE; CHOLINE-ACETYLTRANSFERASE; AXONAL-TRANSPORT; PRIMARY TARGET; MOTOR-NEURONS; SOD1; ALS; EXPRESSION; VULNERABILITY;
D O I
10.3109/17482968.2012.660953
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
We undertook a longitudinal study of the histological and biochemical changes at the neuromuscular junction (NMJ) in muscles of SOD1-G93A mice. We also assessed these functions in mice treated with a known heat shock protein inducer, arimoclomol. Tissue samples of treated and untreated mSOD mice were analysed for AChE and ChAT enzyme activities as markers of neuromuscular function. Sections of hindlimb muscles (TA, EDL and soleus) were also stained for succinate dehydrogenase and silver cholinesterase activities as well as for immunohistochemistry. Hsp70 levels were also measured from muscle samples using ELISA. Results showed that denervation and nerve sprouting were present at symptom onset in fast muscles, although slow muscles remained fully innervated. Cholinergic enzyme activities were reduced prior to denervation and declined further with disease progression. Reduction of endplate size, a slow to fast shift in muscle phenotype was also observed. Treatment with arimoclomol delayed the appearance of these changes, increased innervation, cholinergic enzyme activities and endplate size and reversed muscle fibre transformation. These beneficial effects of arimoclomol in muscles were accompanied by an increase in Hsp70 expression. In conclusion, our results indicate that pharmacological targeting of muscles at early stages of disease may be a successful strategy to ameliorate disease progression in ALS.
引用
收藏
页码:378 / 392
页数:15
相关论文
共 50 条
  • [31] Retinal glial changes in SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis
    Ramirez, A. I.
    Salobrar-Garcia, E.
    Matamoros, J. A.
    Rojas, P.
    Fernandez Albarral, J. A.
    Lopez-Cuenca, I.
    Sanchez-Puebla, L.
    Elvira-Hurtado, L.
    Santos-Garcia, I.
    de lago, E.
    Ramirez, J. M.
    de Hoz, R.
    Salazar, J. J.
    GLIA, 2023, 71 : E443 - E444
  • [32] Treatment with an antibody directed against Nogo-A delays disease progression in the SOD1G93A mouse model of Amyotrophic lateral sclerosis
    Bros-Facer, Virginie
    Krull, David
    Taylor, Adam
    Dick, James R. T.
    Bates, Stewart A.
    Cleveland, Matthew S.
    Prinjha, Rabinder K.
    Greensmith, Linda
    HUMAN MOLECULAR GENETICS, 2014, 23 (16) : 4187 - 4200
  • [33] GPNMB RESISTS SKELETAL MUSCLE LESION IN THE SOD1 (G93A) MOUSE MODEL OF AMYOTROPHIC LATERAL SCLEROSIS
    Nagahara, Y.
    Tanaka, H.
    Tsuruma, K.
    Ono, Y.
    Noda, Y.
    Nikawa, T.
    Shimazawa, M.
    Hara, H.
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2014, 115 : 195 - 195
  • [34] A major QTL on mouse chromosome 17 resulting in lifespan variability in SOD1-G93A transgenic mouse models of amyotrophic lateral sclerosis
    Sher, Roger B.
    Heiman-Patterson, Terry D.
    Blankenhorn, Elizabeth A.
    Jiang, Juliann
    Alexander, Guillermo
    Deitch, Jeffrey S.
    Cox, Gregory A.
    AMYOTROPHIC LATERAL SCLEROSIS AND FRONTOTEMPORAL DEGENERATION, 2014, 15 (7-8) : 588 - 600
  • [35] Arylsulfanyl pyrazolones block mutant SOD1-G93A aggregation. Potential application for the treatment of amyotrophic lateral sclerosis
    Chen, Tian
    Benmohamed, Radhia
    Arvanites, Anthony C.
    Ranaivo, Hantamalala Ralay
    Morimoto, Richard I.
    Ferrante, Robert J.
    Watterson, D. Martin
    Kirsch, Donald R.
    Silverman, Richard B.
    BIOORGANIC & MEDICINAL CHEMISTRY, 2011, 19 (01) : 613 - 622
  • [36] The transcription factor Nurr1 is upregulated in amyotrophic lateral sclerosis patients and SOD1-G93A mice
    Valsecchi, Valeria
    Boido, Marina
    Montarolo, Francesca
    Guglielmotto, Michela
    Perga, Simona
    Martire, Serena
    Cutrupi, Santina
    Iannello, Andrea
    Gionchiglia, Nadia
    Signorino, Elena
    Calvo, Andrea
    Fuda, Giuseppe
    Chio, Adriano
    Bertolotto, Antonio
    Vercelli, Alessandro
    DISEASE MODELS & MECHANISMS, 2020, 13 (05)
  • [37] Neuroprotective effects of JGK-263 in transgenic SOD1-G93A mice of amyotrophic lateral sclerosis
    Ahn, Suk-Won
    Jeon, Gye Sun
    Kim, Myung-Jin
    Shon, Jee-Heun
    Kim, Jee-Eun
    Shin, Je-Young
    Kim, Sung-Min
    Kim, Seung Hyun
    Ye, In-Hae
    Lee, Kwang-Woo
    Hong, Yoon-Ho
    Sung, Jung-Joon
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2014, 340 (1-2) : 112 - 116
  • [38] Rapamycin treatment augments motor neuron degeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis
    Zhang, Xiaojie
    Li, Liang
    Chen, Sheng
    Yang, Dehua
    Wang, Yi
    Zhang, Xin
    Wang, Zheng
    Le, Weidong
    AUTOPHAGY, 2011, 7 (04) : 412 - 425
  • [39] TREHALOSE DECREASES MUTANT SOD1 EXPRESSION AND ALLEVIATES MOTOR DEFICIENCY IN EARLY BUT NOT END-STAGE AMYOTROPHIC LATERAL SCLEROSIS IN A SOD1-G93A MOUSE MODEL
    Li, Y.
    Guo, Y.
    Wang, X.
    Yu, X.
    Duan, W.
    Hong, K.
    Wang, J.
    Han, H.
    Li, C.
    NEUROSCIENCE, 2015, 298 : 12 - 25
  • [40] Gene Editing Therapy in a Humanized SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis
    Shi, Linyu
    Yang, Dong
    Xiao, Shenglin
    Yang, Hui
    MOLECULAR THERAPY, 2023, 31 (04) : 346 - 346