Epigenetic plasticity enables copepods to cope with ocean acidification

被引:17
|
作者
Lee, Young Hwan [1 ]
Kim, Min-Sub [1 ]
Wang, Minghua [2 ]
Bhandari, Ramji K. [3 ]
Park, Heum Gi [4 ]
Wu, Rudolf Shiu-Sun [5 ,6 ]
Lee, Jae-Seong [1 ]
机构
[1] Sungkyunkwan Univ, Coll Sci, Dept Biol Sci, Suwon, South Korea
[2] Xiamen Univ, Coll Environm & Ecol, Fujian Prov Key Lab Coastal Ecol & Environm Studi, Xiamen, Peoples R China
[3] Univ North Carolina Greensboro, Dept Biol, Greensboro, NC USA
[4] Gangneung Wonju Natl Univ, Coll Life Sci, Dept Marine Ecol & Environm, Kangnung, South Korea
[5] Educ Univ Hong Kong, Dept Sci & Environm Studies, Kowloon, Hong Kong, Peoples R China
[6] City Univ Hong Kong, State Key Lab Marine Pollut, Kowloon, Hong Kong, Peoples R China
基金
新加坡国家研究基金会;
关键词
EVOLUTIONARY; PROJECTIONS; ENVIRONMENT; RESPONSES; GROWTH;
D O I
10.1038/s41558-022-01477-4
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Plasticity enhances species fitness and survival under climate change. Ocean acidification poses a potential threat to copepods, a major zooplankton group that serves as a key link between the lower and higher trophic levels in the marine environment, yet the mechanisms underlying different adaptive responses remain poorly understood. Here we show that although elevated CO2 can exert negative effects on reproduction of Paracyclopina nana, multigenerational plasticity can enable recovery after three generations. By integrating the methylome and transcriptome with the draft genome and undertaking DNA methylation treatments, we demonstrate the vital role of epigenetic modifications in ocean acidification responses and identify regions associated with reproductive resilience. Our results demonstrate that DNA methylation might play an important role in enhancing species fitness of copepods and that failing to consider phenotypic plasticity could lead to overestimation of species' vulnerabilities.
引用
收藏
页码:918 / +
页数:25
相关论文
共 50 条
  • [41] Ocean Acidification in the Antiquity
    不详
    [J]. HYDROLOGIE UND WASSERBEWIRTSCHAFTUNG, 2012, 56 (02): : 92 - 92
  • [42] Ocean acidification costs
    Monica Contestabile
    [J]. Nature Climate Change, 2012, 2 (3) : 146 - 147
  • [43] COPING WITH OCEAN ACIDIFICATION
    Stead, Nicola
    [J]. JOURNAL OF EXPERIMENTAL BIOLOGY, 2013, 216 (08): : I - II
  • [45] THE HOAX OF OCEAN ACIDIFICATION
    Ollier, Clifford
    [J]. QUAESTIONES GEOGRAPHICAE, 2019, 38 (03) : 59 - 66
  • [46] Beyond ocean acidification
    Philip W. Boyd
    [J]. Nature Geoscience, 2011, 4 : 273 - 274
  • [47] Pontellid copepods, Labidocera spp., affected by ocean acidification: A field study at natural CO2 seeps
    Smith, Joy N.
    Richter, Claudio
    Fabricius, Katharina E.
    Cornils, Astrid
    [J]. PLOS ONE, 2017, 12 (05):
  • [48] Communicating Ocean Acidification
    Pope, Aaron
    Selna, Elizabeth
    [J]. JOURNAL OF MUSEUM EDUCATION, 2013, 38 (03) : 279 - 285
  • [49] Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity
    Vargas, Cristian A.
    Lagos, Nelson A.
    Lardies, Marco A.
    Duarte, Cristian
    Manriquez, Patricio H.
    Aguilera, Victor M.
    Broitman, Bernardo
    Widdicombe, Steve
    Dupont, Sam
    [J]. NATURE ECOLOGY & EVOLUTION, 2017, 1 (04):
  • [50] Effects of ocean acidification and elevated temperature on shell plasticity and its energetic basis in an intertidal gastropod
    Melatunan, Sedercor
    Calosi, Piero
    Rundle, Simon D.
    Widdicombe, Stephen
    Moody, A. John
    [J]. MARINE ECOLOGY PROGRESS SERIES, 2013, 472 : 155 - 168