Stabilized multiphysics finite element method with Crank-Nicolson scheme for a poroelasticity model
被引:2
|
作者:
Ge, Zhihao
论文数: 0引用数: 0
h-index: 0
机构:
Henan Univ, Sch Math & Stat, Jin Ming Ave, Kaifeng 475004, Peoples R China
Henan Univ, Inst Appl Math, Kaifeng, Peoples R ChinaHenan Univ, Sch Math & Stat, Jin Ming Ave, Kaifeng 475004, Peoples R China
Ge, Zhihao
[1
,2
]
He, Yanan
论文数: 0引用数: 0
h-index: 0
机构:
Henan Univ, Sch Math & Stat, Jin Ming Ave, Kaifeng 475004, Peoples R ChinaHenan Univ, Sch Math & Stat, Jin Ming Ave, Kaifeng 475004, Peoples R China
He, Yanan
[1
]
Li, Tingting
论文数: 0引用数: 0
h-index: 0
机构:
Henan Univ, Sch Math & Stat, Jin Ming Ave, Kaifeng 475004, Peoples R ChinaHenan Univ, Sch Math & Stat, Jin Ming Ave, Kaifeng 475004, Peoples R China
Li, Tingting
[1
]
机构:
[1] Henan Univ, Sch Math & Stat, Jin Ming Ave, Kaifeng 475004, Peoples R China
[2] Henan Univ, Inst Appl Math, Kaifeng, Peoples R China
locking phenomenon;
multiphysics finite element method;
poroelasticity model;
GALERKIN FRAMEWORK;
D O I:
10.1002/num.22357
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In the paper, we propose a stabilized multiphysics finite element method with Crank-Nicolson scheme for a poroelasticity model. The method can eliminate the locking phenomenon and reveal the multi-physical process. The lowest equal order finite element pair is used to reduce the computational cost. Furthermore, the method needs no constraint condition Delta t = O(h(2)) and achieves optimal convergent order. Numerical tests are provided to illustrate the optimal accuracy and good performance in eliminating locking phenomenon of the method.
机构:
Tata Inst Fundamental Res Bangalore, Dept Math, Bangalore, Karnataka, IndiaTata Inst Fundamental Res Bangalore, Dept Math, Bangalore, Karnataka, India
Bajpai, S.
Nataraj, N.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Technol, Dept Math, Bombay, Maharashtra, IndiaTata Inst Fundamental Res Bangalore, Dept Math, Bangalore, Karnataka, India
机构:
Jiaying Univ, Sch Math, Meizhou 514015, Guangdong, Peoples R ChinaChinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
Hu, Hanzhang
Li, Buyang
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
Li, Buyang
Zou, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China