Stabilized multiphysics finite element method with Crank-Nicolson scheme for a poroelasticity model

被引:2
|
作者
Ge, Zhihao [1 ,2 ]
He, Yanan [1 ]
Li, Tingting [1 ]
机构
[1] Henan Univ, Sch Math & Stat, Jin Ming Ave, Kaifeng 475004, Peoples R China
[2] Henan Univ, Inst Appl Math, Kaifeng, Peoples R China
基金
中国国家自然科学基金;
关键词
locking phenomenon; multiphysics finite element method; poroelasticity model; GALERKIN FRAMEWORK;
D O I
10.1002/num.22357
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper, we propose a stabilized multiphysics finite element method with Crank-Nicolson scheme for a poroelasticity model. The method can eliminate the locking phenomenon and reveal the multi-physical process. The lowest equal order finite element pair is used to reduce the computational cost. Furthermore, the method needs no constraint condition Delta t = O(h(2)) and achieves optimal convergent order. Numerical tests are provided to illustrate the optimal accuracy and good performance in eliminating locking phenomenon of the method.
引用
收藏
页码:1412 / 1428
页数:17
相关论文
共 50 条
  • [31] Analysis of Stabilized Crank-Nicolson Time-Stepping Scheme for the Evolutionary Peterlin Viscoelastic Model
    Ravindran, S. S.
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (13) : 1611 - 1641
  • [32] On a two-grid finite element scheme combined with Crank-Nicolson method for the equations of motion arising in the Kelvin-Voigt model
    Bajpai, S.
    Nataraj, N.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) : 2277 - 2291
  • [33] Explicit FDTD method based on iterated Crank-Nicolson scheme
    Shibayama, Jun
    Nishio, Tomomasa
    Yamauchi, Junji
    Nakano, Hisamatsu
    [J]. ELECTRONICS LETTERS, 2022, 58 (01) : 16 - 18
  • [34] A numerical method based on Crank-Nicolson scheme for Burgers' equation
    Kadalbajoo, Mohan. K.
    Awasthi, A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) : 1430 - 1442
  • [35] Crank-Nicolson finite difference scheme for the Rosenau-Burgers equation
    Hu, Bing
    Xu, Youcai
    Hu, Jinsong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 204 (01) : 311 - 316
  • [36] A two-grid immersed finite element method with the Crank-Nicolson time scheme for semilinear parabolic interface problems
    Yi, Huaming
    Chen, Yanping
    Wang, Yang
    Huang, Yunqing
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 189 : 1 - 22
  • [37] A Modular Voigt Regularization of the Crank-Nicolson Finite Element Method for the Navier-Stokes Equations
    Rong, Y.
    Fiordilino, J. A.
    Shi, F.
    Cao, Y.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 92 (03)
  • [38] Optimal Convergence of the Newton Iterative Crank-Nicolson Finite Element Method for the Nonlinear Schrodinger Equation
    Hu, Hanzhang
    Li, Buyang
    Zou, Jun
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, : 591 - 612
  • [39] Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations
    Chuanjun Chen
    Kang Li
    Yanping Chen
    Yunqing Huang
    [J]. Advances in Computational Mathematics, 2019, 45 : 611 - 630
  • [40] MULTIRATE TIME ITERATIVE SCHEME WITH MULTIPHYSICS FINITE ELEMENT METHOD FOR A NONLINEAR POROELASTICITY
    Ge, Zhihao
    Li, Hairun
    Li, Tingting
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (02) : 597 - 616