Local false discovery rate estimation using feature reliability in LC/MS metabolomics data

被引:21
|
作者
Chong, Elizabeth Y. [1 ]
Huang, Yijian [1 ]
Wu, Hao [1 ]
Ghasemzadeh, Nima [2 ]
Uppal, Karan [2 ]
Quyyumi, Arshed A. [2 ]
Jones, Dean P. [2 ]
Yu, Tianwei [1 ]
机构
[1] Emory Univ, Rollins Sch Publ Hlth, Dept Biostat & Bioinformat, Atlanta, GA 30322 USA
[2] Emory Univ, Sch Med, Dept Med, Atlanta, GA 30322 USA
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
关键词
DIFFERENTIAL EXPRESSION ANALYSIS; BIOCONDUCTOR PACKAGE; HDL-CHOLESTEROL; FATTY-ACIDS; LARGE-SCALE; URIC-ACID; RISK; GENE;
D O I
10.1038/srep17221
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
False discovery rate (FDR) control is an important tool of statistical inference in feature selection. In mass spectrometry-based metabolomics data, features can be measured at different levels of reliability and false features are often detected in untargeted metabolite profiling as chemical and/or bioinformatics noise. The traditional false discovery rate methods treat all features equally, which can cause substantial loss of statistical power to detect differentially expressed features. We propose a reliability index for mass spectrometry-based metabolomics data with repeated measurements, which is quantified using a composite measure. We then present a new method to estimate the local false discovery rate (lfdr) that incorporates feature reliability. In simulations, our proposed method achieved better balance between sensitivity and controlling false discovery, as compared to traditional lfdr estimation. We applied our method to a real metabolomics dataset and were able to detect more differentially expressed metabolites that were biologically meaningful.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] The effect of correlation in false discovery rate estimation
    Schwartzman, Armin
    Lin, Xihong
    BIOMETRIKA, 2011, 98 (01) : 199 - 214
  • [32] Establishment of Protocols for Global Metabolomics by LC-MS for Biomarker Discovery
    Saigusa, Daisuke
    Okamura, Yasunobu
    Motoike, Ikuko N.
    Katoh, Yasutake
    Kurosawa, Yasuhiro
    Saijyo, Reina
    Koshiba, Seizo
    Yasuda, Jun
    Motohashi, Hozumi
    Sugawara, Junichi
    Tanabe, Osamu
    Kinoshita, Kengo
    Yamamoto, Masayuki
    PLOS ONE, 2016, 11 (08):
  • [33] Normalization, testing, and false discovery rate estimation for RNA-sequencing data
    Li, Jun
    Witten, Daniela M.
    Johnstone, Iain M.
    Tibshirani, Robert
    BIOSTATISTICS, 2012, 13 (03) : 523 - 538
  • [34] THE EDGE OF DISCOVERY: CONTROLLING THE LOCAL FALSE DISCOVERY RATE AT THE MARGIN
    Soloff, Jake a.
    Xiang, Daniel
    Fithian, William
    ANNALS OF STATISTICS, 2024, 52 (02): : 580 - 601
  • [35] Local false discovery rate estimation with competition-based procedures for variable selection
    Sun, Xiaoya
    Fu, Yan
    STATISTICS IN MEDICINE, 2024, 43 (01) : 61 - 88
  • [36] A SEMIPARAMETRIC MIXTURE METHOD FOR LOCAL FALSE DISCOVERY RATE ESTIMATION FROM MULTIPLE STUDIES
    Jeong, Seok-Oh
    Choi, Dongseok
    Jang, Woncheol
    ANNALS OF APPLIED STATISTICS, 2020, 14 (03): : 1242 - 1257
  • [37] BAYESIAN LOCAL FALSE DISCOVERY RATE FOR SPARSE COUNT DATA WITH APPLICATION TO THE DISCOVERY OF HOTSPOTS IN PROTEIN DOMAINS
    Gauran, Iris Ivy M.
    Park, Junyong
    Rattsev, Ilia
    Peterson, Thomas A.
    Kann, Maricel G.
    Park, DoHwan
    ANNALS OF APPLIED STATISTICS, 2022, 16 (03): : 1459 - 1475
  • [38] Knowledge discovery in metabolomics: An overview of MS data handling
    Boccard, Julien
    Veuthey, Jean-Luc
    Rudaz, Serge
    JOURNAL OF SEPARATION SCIENCE, 2010, 33 (03) : 290 - 304
  • [39] Metabolomics data of Mitragyna speciosa leaf using LC-ESI-TOF-MS
    Veeramohan, Rubashiny
    Azizan, Kamalrul Azlan
    Aizat, Wan Mohd
    Goh, Hoe-Han
    Mansor, Sharif Mahsufi
    Yusof, Nur Sabrina Mohd
    Baharum, Syarul Nataciain
    Ng, Chyan Leong
    DATA IN BRIEF, 2018, 18 : 1212 - 1216
  • [40] Feature-specific inference for penalized regression using local false discovery rates
    Miller, Ryan
    Breheny, Patrick
    STATISTICS IN MEDICINE, 2023, 42 (09) : 1412 - 1429