Road traffic density estimation using microscopic and macroscopic parameters

被引:34
|
作者
Asmaa, Ouessai [1 ]
Mokhtar, Keche [1 ]
Abdelaziz, Ouamri [1 ]
机构
[1] Univ Sci & Technol USTO MB, Dept Elect, Signals & Images Lab, El Mnaouar Bir El Djir O, Algeria
关键词
Road traffic density estimation; Microscopic and macroscopic traffic parameters; Motion detection and tracking; KNN; LVQ; SVM;
D O I
10.1016/j.imavis.2013.09.006
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a comparative study of two approaches for road traffic density estimation. The first approach uses the microscopic parameters which are extracted using both motion detection and tracking methods from a video sequence, and the second approach uses the macroscopic parameters which are directly estimated by analyzing the global motion in the video scene. The extracted parameters are applied to three classifiers, the K Nearest Neighbor (KNN) classifier, the LVQ classifier and the SVM classifier, in order to classify the road traffic in three categories: light, medium and heavy. The methods are compared based on their robustness to the classification of different road traffic states. The goal of this study is to propose an algorithm for road traffic density estimation with a high precision. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:887 / 894
页数:8
相关论文
共 50 条