New Exact Solutions for a Generalized Double Sinh-Gordon Equation

被引:6
|
作者
Magalakwe, Gabriel [1 ]
Khalique, Chaudry Masood [1 ]
机构
[1] North West Univ, Dept Math Sci, Int Inst Symmetry Anal & Math Modelling, ZA-2735 Mmabatho, South Africa
关键词
NONLINEAR EVOLUTION-EQUATIONS; TRAVELING-WAVE SOLUTIONS; TANH-FUNCTION-METHOD; EXP-FUNCTION METHOD; MATHEMATICAL PHYSICS; EXPANSION;
D O I
10.1155/2013/268902
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a generalized double sinh-Gordon equation, which has applications in various fields, such as fluid dynamics, integrable quantum field theory, and kink dynamics. We employ the Exp-function method to obtain new exact solutions for this generalized double sinh-Gordon equation. This method is important as it gives us new solutions of the generalized double sinh-Gordon equation.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Spectral Data for Simply Periodic Solutions of the Sinh-Gordon Equation
    Klein, Sebastian
    SPECTRAL THEORY FOR SIMPLY PERIODIC SOLUTIONS OF THE SINH-GORDON EQUATION, 2018, 2229 : 25 - 37
  • [42] Analytical and numerical investigation for a new generalized q-deformed sinh-Gordon equation
    Hussain, Rashida
    Naseem, Ayesha
    Javed, Sara
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (05)
  • [43] A new shifted generalized Chebyshev approach for multi-dimensional sinh-Gordon equation
    Abd-Elhameed, W. M.
    Ahmed, H. M.
    Zaky, M. A.
    Hafez, R. M.
    PHYSICA SCRIPTA, 2024, 99 (09)
  • [44] Representations and classification of traveling wave solutions to sinh-Gordon equation
    Liu Cheng-Shi
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (01) : 153 - 158
  • [45] THE ELLIPTIC SOLUTION OF THE SINH-GORDON EQUATION
    CHELNOKOV, VE
    ZEITLIN, MG
    PHYSICS LETTERS A, 1983, 99 (04) : 147 - 149
  • [46] SOLITON CONNECTION OF THE SINH-GORDON EQUATION
    GRAUEL, A
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1984, 39 (09): : 917 - 918
  • [47] Solitary and extended waves in the generalized sinh-Gordon equation with a variable coefficient
    Wei-Ping Zhong
    Milivoj R. Belić
    Milan S. Petrović
    Nonlinear Dynamics, 2014, 76 : 717 - 723
  • [48] Solitary and extended waves in the generalized sinh-Gordon equation with a variable coefficient
    Zhong, Wei-Ping
    Belic, Milivoj R.
    Petrovic, Milan S.
    NONLINEAR DYNAMICS, 2014, 76 (01) : 717 - 723
  • [49] NEW EXPLICIT EXACT SOLUTIONS OF THE mKdV-sinh-GORDON EQUATION
    Su, Kalin
    Xie, Yuanxi
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2011, 25 (08): : 1101 - 1109
  • [50] The complex multi-symplectic scheme for the generalized sinh-Gordon equation
    WeiPeng Hu
    ZiChen Deng
    SongMei Han
    Wei Fan
    Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52 : 1618 - 1623