Hilbert-Schmidt distance and entanglement witnessing

被引:12
|
作者
Pandya, Palash [1 ]
Sakarya, Omer [2 ]
Wiesniak, Marcin [1 ,3 ]
机构
[1] Univ Gdansk, Fac Math Phys & Informat, Inst Theoret Phys & Astrophys, PL-80308 Gdansk, Poland
[2] Univ Gdansk, Fac Math Phys & Informat, Inst Informat, PL-80308 Gdansk, Poland
[3] Univ Gdansk, Int Ctr Theory Quantum Technol, PL-80308 Gdansk, Poland
关键词
MIXED STATES; SEPARABILITY;
D O I
10.1103/PhysRevA.102.012409
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Gilbert proposed an algorithm for bounding the distance between a given point and a convex set. We apply the Gilbert's algorithm to get an upper bound on the Hilbert-Schmidt distance between a given state and the set of separable states. While Hilbert-Schmidt distance does not form a proper entanglement measure, it can nevertheless be useful for witnessing entanglement. We provide a few methods based on the Gilbert's algorithm that can reliably qualify a given state as strongly entangled or practically separable, while being computationally efficient. The method also outputs successively improved approximations to the closest separable state for the given state. We demonstrate the efficacy of the method with examples.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] ON NORMAL DERIVATIONS OF HILBERT-SCHMIDT TYPE
    KITTANEH, F
    GLASGOW MATHEMATICAL JOURNAL, 1987, 29 : 245 - 248
  • [42] The Kernel Theorem of Hilbert-Schmidt operators
    Martínez-Morales, JL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (01) : 71 - 77
  • [43] The Hilbert-Schmidt norm as a measure of entanglement in spin-1/2 Heisenberg chain: generalized Bell inequality and distance between states
    Silva, Saulo L. L.
    Franco, Daniel H. T.
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2022, 9 (02) : 219 - 224
  • [44] HILBERT MODULES REVISITED - ORTHONORMAL BASES AND HILBERT-SCHMIDT OPERATORS
    CABRERA, M
    MARTINEZ, J
    RODRIGUEZ, A
    GLASGOW MATHEMATICAL JOURNAL, 1995, 37 : 45 - 54
  • [45] Random density matrices: Closed form expressions for the variance of squared Hilbert-Schmidt distance
    Laha, Aritra
    Kumar, Santosh
    PHYSICS LETTERS A, 2024, 514
  • [46] Measuring statistical dependence with Hilbert-Schmidt norms
    Gretton, A
    Bousquet, O
    Smola, A
    Schölkopf, B
    ALGORITHMIC LEARNING THEORY, 2005, 3734 : 63 - 77
  • [47] A REMARK ON NORMAL DERIVATIONS OF HILBERT-SCHMIDT TYPE
    DUGGAL, BP
    MONATSHEFTE FUR MATHEMATIK, 1991, 112 (04): : 265 - 270
  • [48] Robust Learning with the Hilbert-Schmidt Independence Criterion
    Greenfeld, Daniel
    Shalit, Uri
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [49] Sequence Alignment with the Hilbert-Schmidt Independence Criterion
    Campbell, Jordan
    Lewis, J. P.
    Seol, Yeongho
    PROCEEDINGS CVMP 2018: THE 15TH ACM SIGGRAPH EUROPEAN CONFERENCE ON VISUAL MEDIA PRODUCTION, 2018,
  • [50] THE HILBERT-SCHMIDT METHOD FOR NUCLEON DEUTERON SCATTERING
    MOLLER, K
    NARODETSKII, IM
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1984, 315 (03): : 325 - 332