Integration analysis of quantitative trait loci for resistance to Sclerotinia sclerotiorum in Brassica napus

被引:43
|
作者
Li, Jiqiang [1 ]
Zhao, Zunkang [2 ]
Hayward, Alice [3 ]
Cheng, Hongyu [4 ]
Fu, Donghui [2 ]
机构
[1] Zhangye Acad Agr Sci, Zhangye 734000, Gansu, Peoples R China
[2] Jiangxi Agr Univ, Agron Coll, Key Lab Crop Physiol Ecol & Genet Breeding, Minist Educ, Nanchang 330045, Peoples R China
[3] Univ Queensland, Queensland Alliance Agr & Food Innovat, St Lucia, Qld 4072, Australia
[4] Hexi Univ, Coll Agr & Biotechnol, Zhangye 734000, Gansu, Peoples R China
关键词
Sclerotinia sclerotiorum; Brassica; Quantitative trait loci (QTL); In silico integration; GENOME-WIDE ANALYSIS; DISEASE RESISTANCE; FIBER QUALITY; GENES; IDENTIFICATION; EVOLUTION; COTTON; METAANALYSIS; ASSOCIATION; CLUSTERS;
D O I
10.1007/s10681-015-1417-0
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Much research has identified quantitative trait loci (QTL) for resistance to Sclerotinia sclerotiorum in Brassica. However, the real-world applicability of these QTL for gene discovery and resistance breeding has been hampered by poor inter-study integration. This is due to the use of different mapping populations, environments and diverse markers. In this study, a physical map was constructed based on the recent Brassica napus genome release and used link QTL for resistance to S. sclerotiorum. In total, 353 markers, divided into 146 and 207 on the A and C genomes respectively, were used. This enabled integration of 35 QTLs, including 8 leaf resistance (LR) and 27 stem resistance (SR) QTLs. SR QTLs that were conserved across studies were found on A9 (from 22.5 to 27.5 Mb) and on C6 (from 29.5 to 36.1 Mb). Clusters of nucleotide-binding-site, leucine-rich-repeat-containing candidate resistance genes were identified, which provide key targets for identification of genes for resistance to S. sclerotiorum in B. napus.
引用
收藏
页码:483 / 489
页数:7
相关论文
共 50 条
  • [21] Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B. oleracea
    Yijuan Ding
    Jiaqin Mei
    Qinfei Li
    Yao Liu
    Huafang Wan
    Lei Wang
    Heiko C. Becker
    Wei Qian
    Genetic Resources and Crop Evolution, 2013, 60 : 1615 - 1619
  • [22] Evaluation of Brassica napus accessions for resistance to Sclerotinia sclerotiorum in greenhouse and field conditions
    Khot, S.
    Bradley, C.
    Bilgi, V.
    del Rio, L.
    PHYTOPATHOLOGY, 2005, 95 (06) : S53 - S53
  • [23] Resistance to a highly aggressive isolate of Sclerotinia sclerotiorum in a Brassica napus diversity set
    Taylor, A.
    Coventry, E.
    Jones, J. E.
    Clarkson, J. P.
    PLANT PATHOLOGY, 2015, 64 (04) : 932 - 940
  • [24] Improvement of Sclerotinia sclerotiorum resistance in Brassica napus by using B-oleracea
    Ding, Yijuan
    Mei, Jiaqin
    Li, Qinfei
    Liu, Yao
    Wan, Huafang
    Wang, Lei
    Becker, Heiko C.
    Qian, Wei
    GENETIC RESOURCES AND CROP EVOLUTION, 2013, 60 (05) : 1615 - 1619
  • [25] Analysis of gene expression profiles in response to Sclerotinia sclerotiorum in Brassica napus
    Jianwei Zhao
    Jianlin Wang
    Lingling An
    R. W. Doerge
    Z. Jeffrey Chen
    Craig R. Grau
    Jinling Meng
    Thomas C. Osborn
    Planta, 2007, 227 : 13 - 24
  • [26] Cloning and expression analysis of Rsk in Brassica napus induced by Sclerotinia sclerotiorum
    Yu Zhang
    Chun-xiang Hu
    Cheng-gui Zhang
    Li Gan
    Acta Physiologiae Plantarum, 2011, 33 : 1277 - 1283
  • [27] Transformation of LTP gene into Brassica napus to enhance its resistance to Sclerotinia sclerotiorum
    Fan, Y.
    Du, K.
    Gao, Y.
    Kong, Y.
    Chu, C.
    Sokolov, V.
    Wang, Y.
    RUSSIAN JOURNAL OF GENETICS, 2013, 49 (04) : 380 - 387
  • [28] Screening of Brassica napus and Phaseolus vulgaris for physiological resistance to Sclerotinia sclerotiorum.
    不详
    CANADIAN JOURNAL OF PLANT PATHOLOGY-REVUE CANADIENNE DE PHYTOPATHOLOGIE, 2005, 27 (01): : 166 - 166
  • [29] Transcriptome Analysis of Sclerotinia sclerotiorum at Different Infection Stages on Brassica napus
    Peng, Qi
    Xie, Qingxuan
    Chen, Feng
    Zhou, Xiaoying
    Zhang, Wei
    Zhang, Jiefu
    Pu, Huiming
    Ruan, Ying
    Liu, Chunlin
    Chen, Song
    CURRENT MICROBIOLOGY, 2017, 74 (10) : 1237 - 1245
  • [30] Transcriptome Analysis of Sclerotinia sclerotiorum at Different Infection Stages on Brassica napus
    Qi Peng
    Qingxuan Xie
    Feng Chen
    Xiaoying Zhou
    Wei Zhang
    Jiefu Zhang
    Huiming Pu
    Ying Ruan
    Chunlin Liu
    Song Chen
    Current Microbiology, 2017, 74 : 1237 - 1245