Maximum likelihood estimation of stock volatility using jump-diffusion models

被引:0
|
作者
Chekenya, Nixon S. [1 ]
机构
[1] Midland State Univ, Gweru, Zimbabwe
来源
COGENT ECONOMICS & FINANCE | 2019年 / 7卷 / 01期
关键词
Merton jump diffusion model; Black scholes volatility (IV) curves; Weiner process; maximum likelihood estimation; RETURNS;
D O I
10.1080/23322039.2019.1582318
中图分类号
F [经济];
学科分类号
02 ;
摘要
We investigate whether there are systematic jumps in stock prices using the Brownian motion approach and Poisson processes to test diffusion and jump risk, respectively, on Johannesburg Stock Exchange and whether these jumps cause asset return volatility. Using stock market data from June 2002 to September 2016, we hypothesize that stocks with high positive (negative) slopes are more likely to have large positive (negative) jumps in the future. As such, we expect to observe salient properties of volatility on listed stocks. We also conjecture that it is valid to use maximum likelihood procedures in estimating jumps in stocks.
引用
下载
收藏
页数:17
相关论文
共 50 条
  • [41] AMERICAN OPTIONS AND JUMP-DIFFUSION MODELS
    ZHANG, XL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (09): : 857 - 862
  • [42] Realized range-based threshold estimation for jump-diffusion models
    Cai, Jingwei
    Chen, Ping
    Mei, Xia
    Ji, Xiao
    IAENG International Journal of Applied Mathematics, 2015, 45 (04) : 293 - 299
  • [43] European option pricing under stochastic volatility jump-diffusion models with transaction cost
    Tian, Yingxu
    Zhang, Haoyan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (09) : 2722 - 2741
  • [44] COMPUTATION OF GREEKS FOR JUMP-DIFFUSION MODELS
    Eddahbi, M'Hamed
    Ben Cherif, Sidi Mohamed Lalaoui
    Nasroallah, Abdelaziz
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2015, 18 (06)
  • [45] Threshold reweighted Nadaraya-Watson estimation of jump-diffusion models
    Song, Kunyang
    Song, Yuping
    Wang, Hanchao
    PROBABILITY UNCERTAINTY AND QUANTITATIVE RISK, 2022, 7 (01) : 31 - 44
  • [46] LOWER BOUND APPROXIMATION TO BASKET OPTION VALUES FOR LOCAL VOLATILITY JUMP-DIFFUSION MODELS
    Xu, Guoping
    Zheng, Harry
    INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2014, 17 (01)
  • [47] American-style options in jump-diffusion models: estimation and evaluation
    Ben-Ameur, Hatem
    Cherif, Rim
    Remillard, Bruno
    QUANTITATIVE FINANCE, 2016, 16 (08) : 1313 - 1324
  • [48] Threshold reweighted Nadaraya-Watson estimation of jump-diffusion models
    Kunyang Song
    Yuping Song
    Hanchao Wang
    Probability,Uncertainty and Quantitative Risk, 2022, (01) : 31 - 44
  • [49] Comparison of Jump-Diffusion Parameters Using Passage Times Estimation
    Khaldi, K.
    Djeddour, K.
    Meddahi, S.
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [50] Information theory for maximum likelihood estimation of diffusion models
    Choi, Hwan-Sik
    JOURNAL OF ECONOMETRICS, 2016, 191 (01) : 110 - 128