Zero-dimensional isomorphic dynamical models

被引:0
|
作者
Downarowicz, Tomasz [1 ,2 ]
Jin, Lei [3 ]
Lusky, Wolfgang [4 ]
Qiao, Yixiao [5 ]
机构
[1] Wroclaw Univ Technol, Fac Math, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
[2] Wroclaw Univ Technol, Fac Fundamental Problems Technol, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
[3] Polish Acad Sci, Inst Math, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[4] Univ Paderborn, Inst Math, Warburger Str 100, D-33098 Paderborn, Germany
[5] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
assignment; zero-dimensional system; isomorphic model; measure-theoretic isomorphism;
D O I
10.1017/etds.2018.131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By an assignment we mean a mapping from a Choquet simplex K to probability measure-preserving systems obeying some natural restrictions. We prove that if Phi is an aperiodic assignment on a Choquet simplex K such that the set of extreme points exK is a countable union boolean OR(n) E-n, where each set E-n is compact, zero-dimensional and the restriction of Phi to the Bauer simplex K-n spanned by E-n can be 'embedded' in some topological dynamical system, then Phi can be 'realized' in a zero-dimensional system.
引用
收藏
页码:2116 / 2130
页数:15
相关论文
共 50 条
  • [41] On topologically zero-dimensional morphisms
    Castillejos, Jorge
    Neagu, Robert
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (09)
  • [42] Zero-dimensional field theory
    Argyres, EN
    van Hameren, AFW
    Kleiss, RHP
    Papadopoulos, CG
    EUROPEAN PHYSICAL JOURNAL C, 2001, 19 (03): : 567 - 582
  • [43] Zero-dimensional structures in semiconductors
    vonKlitzing, K
    PHYSICA SCRIPTA, 1996, T68 : 21 - 26
  • [44] Zero-dimensional field theory
    E.N. Argyres
    A.F.W. van Hameren
    R.H.P. Kleiss
    C.G. Papadopoulos
    The European Physical Journal C - Particles and Fields, 2001, 19 : 567 - 582
  • [45] Products of zero-dimensional pairs
    Karim D.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (3): : 691 - 696
  • [46] Zero-Dimensional Principal Extensions
    Downarowicz, Tomasz
    Huczek, Dawid
    ACTA APPLICANDAE MATHEMATICAE, 2013, 126 (01) : 117 - 129
  • [47] ON RADICAL ZERO-DIMENSIONAL IDEALS
    KOBAYASHI, H
    MORITSUGU, S
    HOGAN, RW
    JOURNAL OF SYMBOLIC COMPUTATION, 1989, 8 (06) : 545 - 552
  • [48] REPRESENTATION OF ZERO-DIMENSIONAL SPACES
    JANOS, L
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (06): : A593 - A593
  • [49] Zero-dimensional σ-homogeneous spaces
    Medini, Andrea
    Vidnyanszky, Zoltan
    ANNALS OF PURE AND APPLIED LOGIC, 2024, 175 (01)
  • [50] Strongly Zero-Dimensional Locales
    KOU Hui
    LUO Mao Kang Department of Mathematics. Sichuan University
    Acta Mathematica Sinica,English Series, 2002, 18 (01) : 47 - 54