Random walks on linear groups satisfying a Schubert condition

被引:3
|
作者
He, Weikun [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
基金
欧洲研究理事会;
关键词
STATIONARY MEASURES; PRODUCTS;
D O I
10.1007/s11856-020-2032-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study random walks on GL(d)(Double-struck capital R) whose proximal dimensionris larger than 1 and whose limit set in the Grassmannian Gr(r,d)(Double-struck capital R) is not contained any Schubert variety. These random walks, without being proximal, behave in many ways like proximal ones. Among other results, we establish a Holder-type regularity for the stationary measure on the Grassmannian associated to these random walks. Using this and a generalization of Bourgain's discretized projection theorem, we prove that the proximality assumption in the Bourgain-Furman-Lindenstrauss-Mozes theorem can be relaxed to this Schubert condition.
引用
收藏
页码:593 / 627
页数:35
相关论文
共 50 条
  • [41] Classification of finite groups satisfying a minimal condition
    Shirong Li
    Wei Meng
    Siberian Mathematical Journal, 2009, 50 : 100 - 106
  • [42] FINITE-GROUPS SATISFYING NORMALIZATION CONDITION
    CARANTI, A
    RICERCHE DI MATEMATICA, 1980, 29 (01) : 3 - 16
  • [43] GROUPS SATISFYING MAXIMAL CONDITION FOR NORMAL SUBGROUPS
    WILSON, JS
    MATHEMATISCHE ZEITSCHRIFT, 1970, 118 (02) : 107 - &
  • [44] Random walks on groups and discrete subordination
    Bendikov, A.
    Saloff-Coste, L.
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (5-6) : 580 - 605
  • [45] On the stability of the behavior of random walks on groups
    Ch. Pittet
    L. Saloff-Coste
    The Journal of Geometric Analysis, 2000, 10 (4): : 713 - 737
  • [46] Random walks on groups and KMS states
    Christensen, Johannes
    Thomsen, Klaus
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (01): : 15 - 37
  • [47] Noise sensitivity of random walks on groups
    Benjamini, Itai
    Brieussel, Jeremie
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2023, 20 (02): : 1139 - 1164
  • [48] Random walks on mapping class groups
    Baik, Hyungryul
    Choi, Inhyeok
    EMS SURVEYS IN MATHEMATICAL SCIENCES, 2022, 9 (02) : 279 - 320
  • [49] Equidistribution of random walks on compact groups
    Borda, Bence
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (01): : 54 - 72
  • [50] RANDOM-WALKS ON SOLUBLE GROUPS
    VAROPOULOS, NT
    BULLETIN DES SCIENCES MATHEMATIQUES, 1983, 107 (04): : 337 - 344