Parameter-free model discrimination criterion based on steady-state coplanarity

被引:22
|
作者
Harrington, Heather A. [1 ]
Ho, Kenneth L. [2 ,3 ]
Thorne, Thomas [1 ]
Stumpf, Michael P. H. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Div Mol Biosci, London SW7 2AZ, England
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] NYU, Program Computat Biol, New York, NY 10012 USA
基金
英国生物技术与生命科学研究理事会; 美国国家科学基金会;
关键词
MECHANISMS REVEAL THEMSELVES; COMPLEX ISOTHERMAL REACTORS; REACTION NETWORK STRUCTURE; MULTISITE PHOSPHORYLATION; PROTEIN-PHOSPHORYLATION; DEFICIENCY-ONE; APOPTOSIS; SYSTEMS; INVARIANTS; STABILITY;
D O I
10.1073/pnas.1117073109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce a procedure for deciding when a mass-action model is incompatible with observed steady-state data that does not require any parameter estimation. Thus, we avoid the difficulties of nonlinear optimization typically associated with methods based on parameter fitting. Instead, we borrow ideas from algebraic geometry to construct a transformation of the model variables such that any set of steady states of the model under that transformation lies on a common plane, irrespective of the values of the model parameters. Model rejection can then be performed by assessing the degree to which the transformed data deviate from coplanarity. We demonstrate our method by applying it to models of multisite phosphorylation and cell death signaling. Our framework offers a parameter-free perspective on the statistical model selection problem, which can complement conventional statistical methods in certain classes of problems where inference has to be based on steady-state data and the model structures allow for suitable algebraic relationships among the steady-state solutions.
引用
收藏
页码:15746 / 15751
页数:6
相关论文
共 50 条
  • [21] Interval Criterion of the Steady-State of the Transient in the Measuring Circuit
    Lupachev, A.
    Sapelkin, I
    Smagin, A.
    2016 2ND INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING, APPLICATIONS AND MANUFACTURING (ICIEAM), 2016,
  • [22] A Chi-square Distribution Based Steady-state Data Judgment Criterion
    Su, Jie
    Wang, Xuguang
    INFORMATION ENGINEERING FOR MECHANICS AND MATERIALS SCIENCE, PTS 1 AND 2, 2011, 80-81 : 724 - 729
  • [23] MODEL FOR STEADY-STATE ECONOMY
    DALY, HE
    FORENSIC QUARTERLY, 1975, 49 (03): : 305 - 319
  • [24] MODEL FOR STEADY-STATE FRICTION
    LOMNITZADLER, J
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1991, 96 (B4): : 6121 - 6131
  • [25] Morphing steady-state free precession
    Bieri, O.
    Patil, S.
    Quick, H. H.
    Scheffler, K.
    MAGNETIC RESONANCE IN MEDICINE, 2007, 58 (06) : 1242 - 1248
  • [26] Parameter Estimation Approach to Banding Artifact Reduction in Balanced Steady-State Free Precession
    Bjork, Marcus
    Ingle, R. Reeve
    Gudmundson, Erik
    Stoica, Petre
    Nishimura, Dwight G.
    Barral, Joelle K.
    MAGNETIC RESONANCE IN MEDICINE, 2014, 72 (03) : 880 - 892
  • [27] PROCEDURE BASED ON STATISTICAL CRITERIA FOR DISCRIMINATION BETWEEN STEADY-STATE KINETIC MODELS
    BARTFAI, T
    MANNERVI.B
    FEBS LETTERS, 1972, 26 (01): : 252 - +
  • [28] Parameter-Free Online Learning via Model Selection
    Foster, Dylan J.
    Kale, Satyen
    Mohri, Mehryar
    Sridharan, Karthik
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [29] Phase-Plane Based Model-Free Estimation of Steady-State Metabolic Cost
    Kantharaju, Prakyath
    Kim, Myunghee
    IEEE ACCESS, 2022, 10 : 97642 - 97650
  • [30] Parameter-free shell model of spherical Coulomb crystals
    Cioslowski, Jerzy
    Grzebielucha, Ewa
    PHYSICAL REVIEW E, 2008, 78 (02):