Parameter-free model discrimination criterion based on steady-state coplanarity

被引:22
|
作者
Harrington, Heather A. [1 ]
Ho, Kenneth L. [2 ,3 ]
Thorne, Thomas [1 ]
Stumpf, Michael P. H. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Div Mol Biosci, London SW7 2AZ, England
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] NYU, Program Computat Biol, New York, NY 10012 USA
基金
英国生物技术与生命科学研究理事会; 美国国家科学基金会;
关键词
MECHANISMS REVEAL THEMSELVES; COMPLEX ISOTHERMAL REACTORS; REACTION NETWORK STRUCTURE; MULTISITE PHOSPHORYLATION; PROTEIN-PHOSPHORYLATION; DEFICIENCY-ONE; APOPTOSIS; SYSTEMS; INVARIANTS; STABILITY;
D O I
10.1073/pnas.1117073109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce a procedure for deciding when a mass-action model is incompatible with observed steady-state data that does not require any parameter estimation. Thus, we avoid the difficulties of nonlinear optimization typically associated with methods based on parameter fitting. Instead, we borrow ideas from algebraic geometry to construct a transformation of the model variables such that any set of steady states of the model under that transformation lies on a common plane, irrespective of the values of the model parameters. Model rejection can then be performed by assessing the degree to which the transformed data deviate from coplanarity. We demonstrate our method by applying it to models of multisite phosphorylation and cell death signaling. Our framework offers a parameter-free perspective on the statistical model selection problem, which can complement conventional statistical methods in certain classes of problems where inference has to be based on steady-state data and the model structures allow for suitable algebraic relationships among the steady-state solutions.
引用
收藏
页码:15746 / 15751
页数:6
相关论文
共 50 条
  • [1] Parameter identification for a LuGre model based on steady-state tire conditions
    X. D. Wu
    S. G. Zuo
    L. Lei
    X. W. Yang
    Y. Li
    International Journal of Automotive Technology, 2011, 12 : 671 - 677
  • [2] Parameter identification for a LuGre model based on steady-state tire conditions
    Wu, X. D.
    Zuo, S. G.
    Lei, L.
    Yang, X. W.
    Li, Y.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2011, 12 (05) : 671 - 677
  • [3] PARAMETER-FREE CLUSTERING MODEL
    GITMAN, I
    PATTERN RECOGNITION, 1972, 4 (03) : 307 - &
  • [4] Steady-state parameter identification of UHV transformer model
    Deng, X., 1600, China Machine Press (29):
  • [5] A Parameter-Free Clustering Algorithm Based on Density Model
    Mu, Jun
    Fei, Hongxiao
    Dong, Xin
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE FOR YOUNG COMPUTER SCIENTISTS, VOLS 1-5, 2008, : 1825 - 1831
  • [6] ROBUST INTERVAL STEADY-STATE CRITERION WITH TUNABLE REFERENCE MODEL
    Yuriy, Bekhtin S.
    Kyaw, Nay Myo
    Andrey, Kovalenko, V
    Alexey, Lupachev A.
    Vadim, Poida V.
    Sergey, Grabarev P.
    2021 XXXI INTERNATIONAL SCIENTIFIC SYMPOSIUM METROLOGY AND METROLOGY ASSURANCE (MMA 2021), 2021, : 21 - 24
  • [7] Parameter Identification of AUV Motion Model Based on NARX Steady-State Response
    Guo, Xiaojun
    Huang, Zhiping
    Su, Shaojing
    2022 INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (ICARM 2022), 2022, : 552 - 555
  • [8] STEADY-STATE DATA AND A QUANTITATIVE MODEL OF OPERANT GENERALIZATION AND DISCRIMINATION
    BLOUGH, DS
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY-ANIMAL BEHAVIORAL PROCESSES, 1975, 104 (01): : 3 - 21
  • [10] A distance protection scheme for HVDC transmission lines based on the Steady-state parameter model
    Zheng, Junchao
    Li, Peng
    Xu, Kai
    Kong, Xiangping
    Wang, Chenqing
    Lin, Jinjiao
    Zhang, Chi
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 136