A Comparison of Different U-Net Models for Segmentation of Overlapping Organoids

被引:0
|
作者
Haja, Asmaa [1 ]
Radu, Stefania [2 ]
Schomaker, Lambert [1 ]
机构
[1] Univ Groningen, Bernoulli Inst, Groningen, Netherlands
[2] Univ Groningen, Groningen, Netherlands
关键词
Deep learning; Segmentation; Imbalanced classes; Organoids;
D O I
10.1145/3574198.3574199
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The interest in automatically analyzing biomedical images increased in the past years, as an accurate localization and segmentation of organoids can help with the early detection of malignancies and predict diseases, such as cancer. The morphometric appearances of these images and the high level of overlapping in the organoids make the segmentation task challenging. This paper studies a simple U-Net and also proposes a double U-Net model with a shared encoder and two decoders, one for binary segmentation of the mask and one for the multi-class segmentation of overlaps. A significant addition to the U-Net is the residual-atrous skip connections, which reduce the semantic gap between the encoder and the decoder. The issue of high imbalance between the classes is addressed using a combination between Focal Loss and Focal Tversky Loss, which significantly improved the performance of the model. Ten networks were trained on more than 20,000 crop images with overlapping and non-overlapping organoids and obtained promising results. When tested on 88 new images, the final models achieved an F1 score of 0.83 for the mask channel and 0.43 for the overlapping channel. The Jaccard Index was 0.72 for the mask and 0.34 for the overlap. To the authors' knowledge, there exists no work in the literature that explores the detection and segmentation of overlapping objects in biomedical images, especially segmenting overlapping organoids, which also shows the novelty of this work.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [31] E-Res U-Net: An improved U-Net model for segmentation of muscle images
    Zhou, Junsheng
    Lu, Yiwen
    Tao, Siyi
    Cheng, Xuan
    Huang, Chenxi
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [32] E-Res U-Net: An improved U-Net model for segmentation of muscle images
    Zhou, Junsheng
    Lu, Yiwen
    Tao, Siyi
    Cheng, Xuan
    Huang, Chenxi
    Expert Systems with Applications, 2021, 185
  • [33] Comparison Between U-Net and U-ReNet Models in OCR Tasks
    Moser, Brian B.
    Raue, Federico
    Hees, Joern
    Dengel, Andreas
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: IMAGE PROCESSING, PT III, 2019, 11729 : 131 - 142
  • [34] Factorized U-net for Retinal Vessel Segmentation
    Gurrola-Ramos, Javier
    Dalmau, Oscar
    Alarcon, Teresa
    PATTERN RECOGNITION, MCPR 2022, 2022, 13264 : 181 - 190
  • [35] A sensitivity analysis for polyp segmentation with U-Net
    Solak, Ahmet
    Ceylan, Rahime
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (22) : 34199 - 34227
  • [36] An Improved U-Net for Cell Nuclear Segmentation
    Jiang H.
    Qin G.
    Zou M.
    Sun M.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2019, 53 (04): : 100 - 107and121
  • [37] A sensitivity analysis for polyp segmentation with U-Net
    Ahmet Solak
    Rahime Ceylan
    Multimedia Tools and Applications, 2023, 82 : 34199 - 34227
  • [38] RESIDUAL U-NET FOR RETINAL VESSEL SEGMENTATION
    Li, Di
    Dharmawan, Dhimas Arief
    Ng, Boon Poh
    Rahardja, Susanto
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1425 - 1429
  • [39] Wavelet U-Net for Medical Image Segmentation
    Ying Li
    Yu Wang
    Tuo Leng
    Wen Zhijie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 800 - 810
  • [40] Extended U-net for Retinal Vessel Segmentation
    Boudegga, Henda
    Elloumi, Yaroub
    Kachouri, Rostom
    Ben Abdallah, Asma
    Bedoui, Mohamed Hedi
    ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2022, 2022, 1653 : 564 - 576