A Comparison of Different U-Net Models for Segmentation of Overlapping Organoids

被引:0
|
作者
Haja, Asmaa [1 ]
Radu, Stefania [2 ]
Schomaker, Lambert [1 ]
机构
[1] Univ Groningen, Bernoulli Inst, Groningen, Netherlands
[2] Univ Groningen, Groningen, Netherlands
关键词
Deep learning; Segmentation; Imbalanced classes; Organoids;
D O I
10.1145/3574198.3574199
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The interest in automatically analyzing biomedical images increased in the past years, as an accurate localization and segmentation of organoids can help with the early detection of malignancies and predict diseases, such as cancer. The morphometric appearances of these images and the high level of overlapping in the organoids make the segmentation task challenging. This paper studies a simple U-Net and also proposes a double U-Net model with a shared encoder and two decoders, one for binary segmentation of the mask and one for the multi-class segmentation of overlaps. A significant addition to the U-Net is the residual-atrous skip connections, which reduce the semantic gap between the encoder and the decoder. The issue of high imbalance between the classes is addressed using a combination between Focal Loss and Focal Tversky Loss, which significantly improved the performance of the model. Ten networks were trained on more than 20,000 crop images with overlapping and non-overlapping organoids and obtained promising results. When tested on 88 new images, the final models achieved an F1 score of 0.83 for the mask channel and 0.43 for the overlapping channel. The Jaccard Index was 0.72 for the mask and 0.34 for the overlap. To the authors' knowledge, there exists no work in the literature that explores the detection and segmentation of overlapping objects in biomedical images, especially segmenting overlapping organoids, which also shows the novelty of this work.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] A Comparison of Different U-Net Models for Segmentation of Overlapping Organoids
    Bernoulli Institute, University of Groningen, Netherlands
    不详
    ACM Int. Conf. Proc. Ser., (1-10): : 1 - 10
  • [2] Dual U-Net for the Segmentation of Overlapping Glioma Nuclei
    Li, Xieli
    Wang, Yuanyuan
    Tang, Qisheng
    Fan, Zhen
    Yu, Jinhua
    IEEE ACCESS, 2019, 7 : 84040 - 84052
  • [3] A Comparison of U-Net Series for CT Pancreas Segmentation
    Zheng, Linya
    Li, Ji
    Zhang, Fan
    Shi, Hong
    Chen, Yinran
    Luo, Xiongbiao
    MEDICAL IMAGING 2023, 2023, 12464
  • [4] Segmentation of overlapping chromosome images using U-Net with improved dilated convolutions
    Sun, Xiaofei
    Li, Jianming
    Ma, Jialiang
    Xu, Huiqing
    Chen, Bin
    Zhang, Yuefei
    Feng, Tao
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (03) : 5653 - 5668
  • [5] Semantic segmentation of human cell nucleus using deep U-Net and other versions of U-Net models
    Yadavendra
    Chand, Satish
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2022, 33 (3-4) : 167 - 186
  • [6] Histopathological Image Segmentation Using U-Net Based Models
    Hatipoglu, Nuh
    Bilgin, Gokhan
    TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21), 2021,
  • [7] Human Kidney Tissue Image Segmentation by U-Net Models
    Statkevych, Roman
    Stirenko, Sergii
    Gordienko, Yuri
    IEEE EUROCON 2021 - 19TH INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES, 2021, : 129 - 134
  • [8] Nerve Segmentation of Ultrasound Images Bayesian U-Net Models
    Michael, Taryn
    Obagbuwa, Ibidun Christiana
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2024, 2024 (01)
  • [9] A Comparison of U-Net Series for Teeth Segmentation in CBCT images
    Zhang, Fan
    Zheng, Linya
    Lin, Chen
    Huang, Liping
    Bai, Yuming
    Chen, Yinran
    Luo, Xiongbiao
    MEDICAL IMAGING 2024: IMAGE PROCESSING, 2024, 12926
  • [10] Chaining a U-Net With a Residual U-Net for Retinal Blood Vessels Segmentation
    Alfonso Francia, Gendry
    Pedraza, Carlos
    Aceves, Marco
    Tovar-Arriaga, Saul
    IEEE ACCESS, 2020, 8 : 38493 - 38500