A TRANSFORMATION METHOD TO CONSTRUCT FAMILY OF EXACTLY SOLVABLE POTENTIALS IN QUANTUM MECHANICS

被引:7
|
作者
Bhagawati, Nabaratna [1 ]
Saikia, N. [2 ]
Singh, N. Nimai [1 ]
机构
[1] Gauhati Univ, Dept Phys, Gauhati 781014, India
[2] Chaiduar Coll, Dept Phys, Gohpur 784168, India
来源
ACTA PHYSICA POLONICA B | 2013年 / 44卷 / 08期
关键词
SCHRODINGER-EQUATION;
D O I
10.5506/APhysPolB.44.1711
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A transformation method is applied to the second order ordinary differential equation satisfied by orthogonal polynomials to construct a family of exactly solvable quantum systems in any arbitrary dimensional space. Using the properties of orthogonal polynomials, the method transforms polynomial differential equation to D-dimensional radial Schrodinger equation which facilitates construction of exactly solvable quantum systems. The method is also applied using associated Laguerre and hypergeometric polynomials. The quantum systems generated from other polynomials are also briefly highlighted.
引用
收藏
页码:1711 / 1723
页数:13
相关论文
共 50 条
  • [31] EXACTLY SOLVABLE MODELS OF SPHERE INTERACTIONS IN QUANTUM-MECHANICS
    ANTOINE, JP
    GESZTESY, F
    SHABANI, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (12): : 3687 - 3712
  • [32] The Quasi-Exactly Solvable Problems in Relativistic Quantum Mechanics
    Liu Li-Yan
    Hao Qing-Hai
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 61 (06) : 683 - 685
  • [33] Solvable potentials from supersymmetric quantum mechanics
    Soh, DS
    Cho, KH
    Kim, SP
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1995, 28 (06) : 777 - 782
  • [34] ON CONDITIONALLY QUASI-EXACTLY SOLVABLE CLASS OF QUANTUM POTENTIALS
    DUTT, R
    VARSHNI, YP
    ADHIKARI, R
    MODERN PHYSICS LETTERS A, 1995, 10 (07) : 597 - 604
  • [35] Is it possible to construct exactly solvable models?
    Haschke, O
    Rühl, W
    THEORETICAL PHYSICS, FIN DE SIECLE, 1999, 539 : 118 - 140
  • [36] A SET OF EXACTLY SOLVABLE POTENTIALS
    LUMING, M
    PREDAZZI, E
    NUOVO CIMENTO B, 1966, 44 (01): : 210 - &
  • [37] QUANTUM-MECHANICS - PROBLEMS INTERMEDIATE WITH RESPECT TO EXACTLY SOLVABLE AND EXACTLY NONSOLVABLE PROBLEMS
    TURBINER, AV
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1988, 94 (02): : 33 - 44
  • [38] Exactly solvable problems of quantum mechanics and their spectrum generating algebras: A review
    Rasinariu, Constantin
    Mallow, Jeffry V.
    Gangopadhyaya, Asim
    CENTRAL EUROPEAN JOURNAL OF PHYSICS, 2007, 5 (02): : 111 - 134
  • [39] Exactly solvable time-dependent models in quantum mechanics and their applications
    A. A. Suzko
    G. Giorgadze
    Physics of Particles and Nuclei, 2008, 39
  • [40] Exactly solvable diffusion models in the framework of the extended supersymmetric quantum mechanics
    Berezovoj, V. P.
    Ivashkevych, G. I.
    Konchatnij, M. I.
    PHYSICS LETTERS A, 2010, 374 (09) : 1197 - 1200