triblock terpolymer;
step-wise microphase separation;
transmission electron microscopy;
D O I:
10.1016/S0032-3861(02)00112-X
中图分类号:
O63 [高分子化学(高聚物)];
学科分类号:
070305 ;
080501 ;
081704 ;
摘要:
The triblock terpolymer (PI-b-PS-b-PVME) consisting of polyisoprene (PI), polystyrene (PS) and poly(vinyl methyl ether) (PVME) was synthesized by coupling reaction between living PI-b-PS anion and end-chlorinated PVME prepared via living cationic polymerization. This polymer is an amphiphilic block polymer and unique in a sense that it exhibits complex phase behavior because PS and PVME have a lower critical solution temperature (LCST)-type phase diagram while PI and PS (or PVME) have an UCST-type phase diagram. This unique architecture would result in a step-wise microphase separation to form a three-phase microdomain structure. It was observed by transmission electron microscopy with ultrathin sections that the toluene-cast film of PI-b-PS-b-PVME has a two-phase lamellar structure consisting of PI microdomains and mixed PS/PVME microdomains. Applying a drop of water onto the ultrathin sections induced further microphase separation between PS and PVME within the lamellar microdomains resulting in the three-phase structure. Water is a selective solvent for PVME and might have lowered the order-disorder temperature between PS and PVME. This step-wise microphase separation may be a new technique to control microphase-separated structures in triblock terpolymers. (C) 2002 Published by Elsevier Science Ltd.