We consider the one-dimensional wave equation with periodic density rho of period epsilon --> 0 in a bounded interval. By a counterexample due to Avellaneda, Bardos and Rauch we know that the exact controllability property does not hold uniformly as epsilon --> 0 when the control acts on one of the extremes of the interval. The reason is that the eigenfunctions with wavelength of the order of epsilon may have a singular behavior so that their total energy cannot be uniformly estimated by the energy observed on one of the extremes of the interval. We give partial controllability results for the projection of the solutions over the subspaces generated by the eigenfunctions with wavelength larger and shorter than epsilon. Both results are sharp. We use recent results on the asymptotic behavior of the spectrum with respect to the oscillation parameter epsilon, the theory of nonharmonic Fourier series and the Hilbert uniqueness method (HUM).
机构:
Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
Fdn Deusto, Computat Math, Bilbao 48007, Basque Country, SpainUniv Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
Geshkovski, Borjan
Zuazua, Enrique
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
Fdn Deusto, Computat Math, Bilbao 48007, Basque Country, Spain
Friedrich Alexander Univ Erlangen Nurnberg, Dept Math, D-91058 Erlangen, GermanyUniv Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
机构:
Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Complesso Monte S Angelo,Via Cintia, I-80126 Naples, ItalyUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Complesso Monte S Angelo,Via Cintia, I-80126 Naples, Italy
De Maio, Umberto
Nandakumaran, Akamabadath K.
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
Univ Sannio, Dipartimento Sci & Tecnol, I-82100 Benevento, ItalyUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Complesso Monte S Angelo,Via Cintia, I-80126 Naples, Italy
Nandakumaran, Akamabadath K.
Perugia, Carmen
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
Univ Sannio, Dipartimento Sci & Tecnol, I-82100 Benevento, ItalyUniv Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Complesso Monte S Angelo,Via Cintia, I-80126 Naples, Italy
Perugia, Carmen
EVOLUTION EQUATIONS AND CONTROL THEORY,
2015,
4
(03):
: 325
-
346