Soft-constrained model predictive control based on data-driven distributionally robust optimization

被引:29
|
作者
Lu, Shuwen [1 ]
Lee, Jay H. [2 ]
You, Fengqi [1 ,3 ]
机构
[1] Cornell Univ, Coll Engn, Syst Engn, New York, NY 14853 USA
[2] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, Daejeon, South Korea
[3] Cornell Univ, Robert Frederick Smith Sch Chem & Biomol Engn, New York, NY 10021 USA
基金
美国国家科学基金会;
关键词
conic duality; distributionally robust optimization; linear cost function; model predictive control; principal component analysis; stability under uncertainty; BIG DATA; PERSPECTIVES; UNCERTAINTY; STABILITY; SYSTEMS; RISK;
D O I
10.1002/aic.16546
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This article proposes a novel distributionally robust optimization (DRO)-based soft-constrained model predictive control (MPC) framework to explicitly hedge against unknown external input terms in a linear state-space system. Without a priori knowledge of the exact uncertainty distribution, this framework works with a lifted ambiguity set constructed using machine learning to incorporate the first-order moment information. By adopting a linear performance measure and considering input and state constraints robustly with respect to a lifted support set, the DRO-based MPC is reformulated as a robust optimization problem. The constraints are softened to ensure recursive feasibility. Theoretical results on optimality, feasibility, and stability are further discussed. Performance and computational efficiency of the proposed method are illustrated through motion control and building energy control systems, showing 18.3% less cost and 78.8% less constraint violations, respectively, while requiring one third of the CPU time compared to multi-stage scenario based stochastic MPC.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] A data-driven distributionally robust optimization approach for the core acquisition problem
    Yang, Cheng-Hu
    Su, Xiao-Li
    Ma, Xin
    Talluri, Srinivas
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2024, 318 (01) : 253 - 268
  • [32] DATA-DRIVEN OPTIMAL TRANSPORT COST SELECTION FOR DISTRIBUTIONALLY ROBUST OPTIMIZATION
    Blanchet, Jose
    Kang, Yang
    Murthy, Karthyek
    Zhang, Fan
    2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 3740 - 3751
  • [33] Optimal PV Inverter Control in Distribution Systems via Data-Driven Distributionally Robust Optimization
    Bai, Linquan
    Xu, Guanglin
    Xue, Yaosuo
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [34] A robust data-driven model predictive thermal control for rack-based data center
    Li, Yiran
    Yang, Chao
    Xia, Yuanqing
    Journal of Building Engineering, 2024, 98
  • [35] Data-Driven Optimization Framework for Nonlinear Model Predictive Control
    Zhang, Shiliang
    Cao, Hui
    Zhang, Yanbin
    Jia, Lixin
    Ye, Zonglin
    Hei, Xiali
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [36] A data-driven scheduling model of virtual power plant using Wasserstein distributionally robust optimization
    Liu, Huichuan
    Qiu, Jing
    Zhao, Junhua
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 137
  • [37] Data-driven distributionally robust transmission expansion planning considering contingency-constrained generation reserve optimization
    Zhang, Chengming
    Liu, Lu
    Cheng, Haozhong
    Liu, Dundun
    Zhang, Jianping
    Li, Gang
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 131
  • [38] Learning-based robust model predictive control with data-driven Koopman operators
    Wang, Meixi
    Lou, Xuyang
    Cui, Baotong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (09) : 3295 - 3321
  • [39] Learning-based robust model predictive control with data-driven Koopman operators
    Meixi Wang
    Xuyang Lou
    Baotong Cui
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 3295 - 3321
  • [40] Data-driven Wasserstein distributionally robust chance-constrained optimization for crude oil scheduling under uncertainty
    Dai, Xin
    Zhao, Liang
    He, Renchu
    Du, Wenli
    Zhong, Weimin
    Li, Zhi
    Qian, Feng
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2024, 69 : 152 - 166