Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders

被引:0
|
作者
Ma, Tengfei [1 ]
Chen, Jie [1 ]
Xiao, Cao [1 ]
机构
[1] IBM Res, New York, NY 10598 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep generative models have achieved remarkable success in various data domains, including images, time series, and natural languages. There remain, however, substantial challenges for combinatorial structures, including graphs. One of the key challenges lies in the difficulty of ensuring semantic validity in context. For example, in molecular graphs, the number of bonding-electron pairs must not exceed the valence of an atom; whereas in protein interaction networks, two proteins may be connected only when they belong to the same or correlated gene ontology terms. These constraints are not easy to be incorporated into a generative model. In this work, we propose a regularization framework for variational autoencoders as a step toward semantic validity. We focus on the matrix representation of graphs and formulate penalty terms that regularize the output distribution of the decoder to encourage the satisfaction of validity constraints. Experimental results confirm a much higher likelihood of sampling valid graphs in our approach, compared with others reported in the literature.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Scene Graph Masked Variational Autoencoders for 3D Scene Generation
    Xu, Rui
    Hui, Le
    Han, Yuehui
    Qian, Jianjun
    Xie, Jin
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5725 - 5733
  • [42] Variational Autoencoders for chord sequence generation conditioned on Western harmonic music complexity
    Comanducci, Luca
    Gioiosa, Davide
    Zanoni, Massimiliano
    Antonacci, Fabio
    Sarti, Augusto
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2023, 2023 (01)
  • [43] Property-guided generation of complex polymer topologies using variational autoencoders
    Jiang, Shengli
    Dieng, Adji Bousso
    Webb, Michael A.
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [44] Variational Autoencoders for chord sequence generation conditioned on Western harmonic music complexity
    Luca Comanducci
    Davide Gioiosa
    Massimiliano Zanoni
    Fabio Antonacci
    Augusto Sarti
    EURASIP Journal on Audio, Speech, and Music Processing, 2023
  • [45] Hyperspectral unmixing for Raman spectroscopy via physics-constrained autoencoders
    Georgiev, Dimitar
    Fernandez-Galiana, Alvaro
    Pedersen, Simon Vilms
    Papadopoulos, Georgios
    Xie, Ruoxiao
    Stevens, Molly M.
    Barahona, Mauricio
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (45)
  • [46] LHC hadronic jet generation using convolutional variational autoencoders with normalizing flows
    Orzari, Breno
    Chernyavskaya, Nadezda
    Cobe, Raphael
    Duarte, Javier
    Fialho, Jefferson
    Gunopulos, Dimitrios
    Kansal, Raghav
    Pierini, Maurizio
    Tomei, Thiago
    Touranakou, Mary
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (04):
  • [47] FaceVAE: Generation of a 3D Geometric Object Using Variational Autoencoders
    Park, Sungsoo
    Kim, Hyeoncheol
    ELECTRONICS, 2021, 10 (22)
  • [48] Plausible 3D Face Wrinkle Generation Using Variational Autoencoders
    Deng, Qixin
    Ma, Luming
    Jin, Aobo
    Bi, Huikun
    Le, Binh Huy
    Deng, Zhigang
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2022, 28 (09) : 3113 - 3125
  • [49] Exploring descriptors for titanium microstructure via digital fingerprints from variational autoencoders
    White, Michael D.
    Haribabu, Gowtham Nimmal
    Jegadeesan, Jeyapriya Thimukonda
    Basu, Bikramjit
    Withers, Philip J.
    Race, Chris P.
    COMPUTATIONAL MATERIALS SCIENCE, 2024, 240
  • [50] Optimizing training trajectories in variational autoencoders via latent Bayesian optimization approach *
    Biswas, Arpan
    Vasudevan, Rama
    Ziatdinov, Maxim
    Kalinin, Sergei, V
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (01):