Optimal shape of an elastic column on elastic foundation

被引:20
|
作者
Atanackovic, TM [1 ]
Novakovic, BN [1 ]
机构
[1] Univ Novi Sad, Fac Tech Sci, Novi Sad 21000, Serbia Monteneg
关键词
optimal shape; elastic foundation;
D O I
10.1016/j.euromechsol.2005.06.008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
By using Pontryagin's maximum principle we determine the shape of an elastic compressed column on elastic, Winkler type foundation. We assume that the column has clamped ends. The optimality conditions for the case of bimodal optimization are derived. It is shown that the optimal cross-sectional area function is determined from the solution of a nonlinear boundary value problem. In the special case of a compressed column with no foundation, the optimality condition and the solution obtained earlier are recovered. (c) 2005 Elsevier SAS. All rights reserved.
引用
收藏
页码:154 / 165
页数:12
相关论文
共 50 条
  • [21] On the optimal design of the shape of a buckled elastic beam
    Sorokin, SV
    Terentiev, AV
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2001, 21 (01) : 60 - 68
  • [22] Shape optimal system for linear elastic structures
    Xing, Jie
    Cai, Ping
    Beijing Ligong Daxue xuebao, 1992, 1 (02): : 103 - 110
  • [23] On the optimal design of the shape of a buckled elastic beam
    S.V. Sorokin
    A.V. Terentiev
    Structural and Multidisciplinary Optimization, 2001, 21 : 60 - 68
  • [24] VIBRATION OF AN ELASTIC PLATE ON AN ELASTIC FOUNDATION
    YEN, DHY
    TANG, SC
    JOURNAL OF SOUND AND VIBRATION, 1971, 14 (01) : 81 - &
  • [25] ON VIBRATION OF AN ELASTIC PLATE ON AN ELASTIC FOUNDATION
    YEN, DHY
    TANG, SC
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1967, 42 (05): : 1202 - &
  • [26] AN OPTIMAL ELASTIC PARTIAL SHAPE MATCHING VIA SHAPE GEODESICS
    Merhy, Mayss'aa
    Benzinou, Abdesslam
    Nasreddine, Kamal
    Khalil, Mohamad
    Faour, Ghaleb
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 4742 - 4746
  • [27] Optimal design of an elastic circular plate on a unilateral elastic foundation. II: Approximate problems
    Salac, P
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2002, 82 (01): : 33 - 42
  • [28] Optimal design of an elastic circular plate on a unilateral elastic foundation. I: Continuous problems
    Salac, P
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2002, 82 (01): : 21 - 32
  • [29] OPTIMAL-DESIGN OF AN ELASTIC OR ELASTOPLASTIC BEAM WITH UNILATERAL ELASTIC-FOUNDATION AND RIGID SUPPORTS
    HLAVACEK, I
    LOVISEK, J
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1992, 72 (01): : 29 - 43
  • [30] Buckling of Nonprismatic Column on Varying Elastic Foundation with Arbitrary Boundary Conditions
    Ghadban, Ahmad A.
    Al-Rahmani, Ahmed H.
    Rasheed, Hayder A.
    Albahttiti, Mohammed T.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017