Malaria mapping using transmission models: Application to survey data from Mali

被引:77
|
作者
Gemperli, A
Vounatsou, P
Sogoba, N
Smith, T
机构
[1] Swiss Trop Inst, Dept Epidemiol & Publ Hlth, Biostat & Basic Epidemiol Grp, CH-4002 Basel, Switzerland
[2] Univ Bamako, Fac Med Pharm & Odontostomatol, Malaria Res & Training Ctr,Epidemiol & GIS Unit, Dept Med Entomol & Vector Ecol, Bamako, Mali
关键词
disease transmission; kriging; malaria; Markov chain Monte Carlo;
D O I
10.1093/aje/kwj026
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Geographic mapping of the distribution of malaria is complicated by the limitations of the available data. The most widely available data are from prevalence surveys, but these surveys are generally carried out at arbitrary locations and include nonstandardized and overlapping age groups. To achieve comparability between different surveys, the authors propose the use of transmission models, particularly the Garki model, to convert heterogeneous age prevalence data to a common scale of estimated entomological inoculation rates, vectorial capacity, or force of infection. They apply this approach to the analysis of survey data from Mali, collected in 1965-1998, extracted from the Mapping Malaria Risk in Africa database. They use Bayesian geostatistical models to produce smooth maps of estimates of the entomological inoculation rates obtained from the Garki model, allowing for the effect of environmental covariates. Again using the Garki model, they convert kriged entomological inoculation rates values to age-specific malaria prevalence. The approach makes more efficient use of the available data than do previous malaria mapping methods, and it produces highly plausible maps of malaria distribution.
引用
收藏
页码:289 / 297
页数:9
相关论文
共 50 条
  • [41] Inference and prediction of malaria transmission dynamics using time series data
    Shi, Benyun
    Lin, Shan
    Tan, Qi
    Cao, Jie
    Zhou, Xiaohong
    Xia, Shang
    Zhou, Xiao-Nong
    Liu, Jiming
    INFECTIOUS DISEASES OF POVERTY, 2020, 9 (01)
  • [42] Inference and prediction of malaria transmission dynamics using time series data
    Shi Benyun
    Lin Shan
    Tan Qi
    Cao Jie
    Zhou Xiaohong
    Xia Shang
    Zhou XiaoNong
    Liu Jiming
    贫困所致传染病(英文), 2020, 09 (04) : 84 - 96
  • [43] Identifying Malaria Transmission Foci for Elimination Using Human Mobility Data
    Ruktanonchai, Nick W.
    DeLeenheer, Patrick
    Tatem, Andrew J.
    Alegana, Victor A.
    Caughlin, T. Trevor
    Erbach-Schoenberg, Elisabeth Zu
    Lourenco, Christopher
    Ruktanonchai, Corrine W.
    Smith, David L.
    PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (04)
  • [44] Inference and prediction of malaria transmission dynamics using time series data
    Benyun Shi
    Shan Lin
    Qi Tan
    Jie Cao
    Xiaohong Zhou
    Shang Xia
    Xiao-Nong Zhou
    Jiming Liu
    Infectious Diseases of Poverty, 9
  • [45] Testing nutrient profile models using data from a survey of nutrition professionals
    Scarborough, Peter
    Boxer, Anna
    Rayner, Mike
    Stockley, Lynn
    PUBLIC HEALTH NUTRITION, 2007, 10 (04) : 337 - 345
  • [46] Optimizing Geophysics Models using Thread and Data Mapping
    Serpa, Matheus S.
    Navaux, Philippe O. A.
    Cruz, Eduardo H. M.
    Panetta, Jairo
    2018 SYMPOSIUM ON HIGH PERFORMANCE COMPUTING SYSTEMS (WSCAD 2018), 2018, : 135 - 141
  • [47] Selective Mapping for Robust Data Transmission Using TxID Signal
    Lee, Jaekwon
    Lee, Sanghwa
    Kim, Dong Ku
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2019, E102B (04) : 940 - 947
  • [48] Application of machine learning models to predict malaria using malaria cases and environmental risk factors
    Mbunge, Elliot
    Millham, Richard C.
    Sibiya, Maureen Nokuthula
    Takavarasha, Sam
    2022 CONFERENCE ON INFORMATION COMMUNICATIONS TECHNOLOGY AND SOCIETY (ICTAS), 2022, : 82 - 86
  • [49] Mapping the transmission risk of Zika virus using machine learning models
    Jiang, Dong
    Hao, Mengmeng
    Ding, Fangyu
    Fu, Jingying
    Li, Meng
    ACTA TROPICA, 2018, 185 : 391 - 399
  • [50] Distributional data analysis of accelerometer data from the NHANES database using nonparametric survey regression models
    Matabuena, Marcos
    Petersen, Alexander
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2023, 72 (02) : 294 - 313