Separation and sensing based on molecular recognition using molecularly imprinted polymers

被引:304
|
作者
Takeuchi, T
Haginaka, J
机构
[1] Hiroshima City Univ, Lab Synth Biochem, Fac Informat Sci, Asaminami Ku, Hiroshima 7313194, Japan
[2] Mukogawa Womens Univ, Fac Pharmaceut Sci, Nishinomiya, Hyogo 6638179, Japan
来源
JOURNAL OF CHROMATOGRAPHY B | 1999年 / 728卷 / 01期
关键词
reviews; molecular imprinting; molecular recognition; template polymerization; polymers;
D O I
10.1016/S0378-4347(99)00057-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Molecular recognition-based separation and sensing systems have received much attention in various fields because of their high selectivity for target molecules. Molecular imprinting has been recognized as a promising technique for the development of such systems, where the molecule to be recognized is added to a reaction mixture of a cross-linker(s), a solvent(s), and a functional monomer(s) that possesses a functional groups(s) capable of interacting with the target molecule. Binding sites in the resultant polymers involve functional groups originating from the added functional monomer(s), which can be constructed according to the shape and chemical properties of the target molecules. After removal of the target molecules, these molecularly imprinted complementary binding sites exhibit high selectivity and affinity for the template molecule. In this article, recent developments in molecularly imprinted polymers are described with their applications as separation media in liquid chromatography, capillary electrophoresis, solid-phase extraction, and membranes. Examples of binding assays and sensing systems using molecularly imprinted polymers are also presented. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] Molecularly imprinted polymers in separation science - Foreword
    Andersson, LI
    Nicholls, IA
    JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2004, 804 (01): : 1 - 1
  • [32] Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection
    Dong, H
    Tong, AJ
    Li, LD
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2003, 59 (02) : 279 - 284
  • [33] Molecularly imprinted polymers and optical sensing applications
    Al-Kindy, S
    Badía, R
    Suárez-Rodríguez, JL
    Díaz-García, ME
    CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2000, 30 (04) : 291 - 309
  • [34] Enhanced molecular recognition with longer chain crosslinkers in molecularly imprinted polymers for an efficient separation of TR active substances
    Kubo, Takuya
    Yagishita, Mayuko
    Tanigawa, Tetsuya
    Konishi-Yamada, Sayaka
    Nakajima, Daisuke
    RSC ADVANCES, 2024, 14 (17) : 12021 - 12029
  • [35] Design of molecularly imprinted polymers for diphenylamine sensing
    Granado, V. L. V.
    Rudnitskaya, A.
    Oliveira, J. A. B. P.
    Gomes, M. T. S. R.
    TALANTA, 2012, 94 : 133 - 139
  • [36] Molecularly imprinted polymers in chemical and biological sensing
    Haupt, K
    Mosbach, K
    BIOCHEMICAL SOCIETY TRANSACTIONS, 1999, 27 (02) : 344 - 350
  • [37] Study of the nature of recognition in molecularly imprinted polymers
    Andersson, HS
    KochSchmidt, AC
    Ohlson, S
    Mosbach, K
    JOURNAL OF MOLECULAR RECOGNITION, 1996, 9 (5-6) : 675 - 682
  • [38] Molecularly Imprinted Polymers for the Recognition of Bimolecules in Water
    Sumaoka, Jun
    Komiyama, Makoto
    KOBUNSHI RONBUNSHU, 2009, 66 (06) : 191 - 201
  • [39] The recognition of lysozyme by patterned molecularly imprinted polymers
    Lin, HY
    Lin, CP
    Lee, GB
    Chou, TC
    2005 IEEE 31ST ANNUAL NORTHEAST BIOENGINEERING CONFERENCE, 2005, : 40 - 41
  • [40] Electrosynthesized molecularly imprinted polymers for protein recognition
    Erdossy, Julia
    Horvath, Viola
    Yarman, Aysu
    Scheller, Frieder W.
    Gyurcsanyi, Robert E.
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2016, 79 : 179 - 190