Baranchick-type Estimators of a Multivariate Normal Mean Under the General Quadratic Loss Function

被引:1
|
作者
Hamdaoui, Abdenour [1 ,2 ]
Benkhaled, Abdelkader [3 ]
Terbeche, Mekki [1 ,4 ]
机构
[1] Univ Sci & Technol Mohamed Boudiaf, Dept Math, Oran, Algeria
[2] Lab Stat & Random Modelisat LSMA, Tilimsen, Algeria
[3] Mascara Univ Mustapha Stambouli, Lab Geomat Ecol & Environm LGEO2E, Dept Biol, Mascara, Algeria
[4] USTO MB, Lab Anal & Applicat Radiat LAAR, Oran, Algeria
关键词
covariance matrix; James-Stein estimator; loss function; multivariate gaussian random variable; non-central chi-square distribution; shrinkage estimator; MINIMAX ESTIMATORS; FAMILY;
D O I
10.17516/1997-1397-2020-13-5-608-621
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of estimating the mean of a multivariate normal distribution by different types of shrinkage estimators is investigated. We established the minimaxity of Baranchick-type estimators for identity covariance matrix and the matrix associated to the loss function is diagonal. In particular the class of James-Stein estimator is presented. The general situation for both matrices cited above is discussed.
引用
收藏
页码:608 / 621
页数:14
相关论文
共 50 条