Simulation and modelling of the drive mode nonlinearity in MEMS-gyroscopes

被引:5
|
作者
Putnik, Martin [1 ]
Cardanobile, Stefano [1 ]
Nagel, Cristian [2 ]
Degenfeld-Schonburg, Peter [2 ]
Mehner, Jan [3 ]
机构
[1] Robert Bosch GmbH, Automot Elect, Tuebingerstr 123, D-72762 Reutlingen, Germany
[2] Robert Bosch GmbH, Corp Res, Robert Bosch Campus 1, D-71272 Renningen, Germany
[3] Tech Univ Chemnitz, Microsyst & Biomed Engn, Reichenhainer Str 70, D-09107 Chemnitz, Germany
关键词
Duffing; geometric nonlinearity; drive mode; MEMS; modelling;
D O I
10.1016/j.proeng.2016.11.313
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Due to manufacturing uncertainties and due to geometric constraints on the moving structure, the drive mode of MEMS gyroscopes may exhibit high intrinsic nonlinearity [1, 5]. The type of the drive mode nonlinearity is mainly quadratic in amplitude [5-6]. Thus, a cubic nonlinearity term can account for the geometric nonlinearities of the structure [4-7]. Here, we present a method to model the drive mode nonlinearity to first order in frequency by using static analysis in the finite element domain. We construct the free parameter in the Duffing nonlinearity term using the results of the static analysis tool. Finally, we verify the 1D Duffing oscillator model with full transient FE simulations of a MEMS gyroscope test structure. (C) 2016 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:950 / 953
页数:4
相关论文
共 50 条
  • [1] Drive-Mode Control for Vibrational MEMS Gyroscopes
    Dong, Lili
    Avanesian, David
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2009, 56 (04) : 956 - 963
  • [2] Drive Mode Control for MEMS Gyroscopes with Electrostatically Tunable Structure
    Zhu, Huijie
    Jin, Zhonghe
    Hu, Shichang
    Ma, Wei
    Liu, Yidong
    2013 INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (3M-NANO), 2013, : 273 - 276
  • [3] An Optimized Analog Drive-Mode Controller for Vibratory MEMS Gyroscopes
    Eminoglu, Burak
    Alper, Said Emre
    Akin, Tayfun
    EUROSENSORS XXV, 2011, 25
  • [4] Amplitude control system of drive-mode oscillations of MEMS gyroscopes
    Nesterenko, T. G.
    Barbin, E. S.
    Baranov, P. F.
    Lo Van Hao
    III INTERNATIONAL CONFERENCE COGNITIVE ROBOTICS, 2019, 516
  • [5] An approach for increasing drive-mode bandwidth of MEMS vibratory gyroscopes
    Acar, C
    Shkel, AM
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2005, 14 (03) : 520 - 528
  • [6] Nonlinear Dynamical System Model for Drive Mode Amplitude Instabilities in MEMS Gyroscopes
    Nabholz, Ulrike
    Curcic, Michael
    Mehner, Jan E.
    Degenfeld-Schonburg, Peter
    2019 6TH IEEE INTERNATIONAL SYMPOSIUM ON INERTIAL SENSORS & SYSTEMS (INERTIAL 2019), 2019,
  • [7] AN ANALYSIS TO IMPROVE STABILITY OF DRIVE-MODE OSCILLATIONS IN CAPACITIVE VIBRATORY MEMS GYROSCOPES
    Alper, S. E.
    Sahin, K.
    Akin, T.
    IEEE 22ND INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS (MEMS 2009), 2009, : 817 - 820
  • [8] MEMS gyroscopes with structurally decoupled 2-DOF drive and sense mode oscillators
    Acar, C
    Shkel, A
    NANOTECH 2003, VOL 1, 2003, : 428 - 431
  • [9] Twist-n-Sync: Software Clock Synchronization with Microseconds Accuracy Using MEMS-Gyroscopes
    Faizullin, Marsel
    Kornilova, Anastasiia
    Akhmetyanov, Azat
    Ferrer, Gonzalo
    SENSORS, 2021, 21 (01) : 1 - 19
  • [10] A static approach for the frequency shift of parasitic excitations in MEMS gyroscopes with geometric nonlinear drive mode
    Putnik, Martin
    Cardanobile, Stefano
    Kehrberg, Steven
    Nagel, Cristian
    Degenfeld-Schonburg, Peter
    Kuehnel, Matthias
    Mehner, Jan
    2017 4TH IEEE INTERNATIONAL SYMPOSIUM ON INERTIAL SENSORS AND SYSTEMS (INERTIAL), 2017, : 144 - 147