Evaluating the performance of nanostructured materials as lithium-ion battery electrodes

被引:166
|
作者
Armstrong, Mark J. [1 ,2 ]
O'Dwyer, Colm [2 ,3 ]
Macklin, William J. [5 ]
Holmes, Justin. D. [1 ,2 ,4 ]
机构
[1] Natl Univ Ireland Univ Coll Cork, Dept Chem, Mat Chem & Anal Grp, Cork, Ireland
[2] Natl Univ Ireland Univ Coll Cork, Tyndall Natl Inst, Cork, Ireland
[3] Natl Univ Ireland Univ Coll Cork, Dept Chem, Appl Nanosci Grp, Cork, Ireland
[4] Univ Dublin Trinity Coll, CRANN, Dublin 2, Ireland
[5] Nexeon Ltd, Abingdon, Oxon, England
基金
爱尔兰科学基金会;
关键词
lithium ion batteries; nanostructuring; anodes; cathodes; LIFEPO4 CATHODE MATERIALS; CARBON-COATED LI4TI5O12; ONE-POT SYNTHESIS; IMPROVED ELECTROCHEMICAL PERFORMANCE; SPINEL LIMN2O4 NANOWIRES; CAPACITY ANODE MATERIAL; GOOD RATE CAPABILITY; IN-SITU SYNTHESIS; SOL-GEL SYNTHESIS; BINDER-FREE ANODE;
D O I
10.1007/s12274-013-0375-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The performance of the lithium-ion cell is heavily dependent on the ability of the host electrodes to accommodate and release Li+ ions from the local structure. While the choice of electrode materials may define parameters such as cell potential and capacity, the process of intercalation may be physically limited by the rate of solid-state Li+ diffusion. Increased diffusion rates in lithium-ion electrodes may be achieved through a reduction in the diffusion path, accomplished by a scaling of the respective electrode dimensions. In addition, some electrodes may undergo large volume changes associated with charging and discharging, the strain of which, may be better accommodated through nanostructuring. Failure of the host to accommodate such volume changes may lead to pulverisation of the local structure and a rapid loss of capacity. In this review article, we seek to highlight a number of significant gains in the development of nanostructured lithium-ion battery architectures (both anode and cathode), as drivers of potential next-generation electrochemical energy storage devices.
引用
下载
收藏
页码:1 / 62
页数:62
相关论文
共 50 条
  • [21] Variable temperature performance of intermetallic lithium-ion battery anode materials
    Jansen, Andrew N.
    Clevenger, Jessica A.
    Baebler, Anna M.
    Vaughey, John T.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (13) : 4457 - 4461
  • [22] The effect of using alternative binders and second life graphite materials on the electrochemical performance of lithium-ion battery electrodes
    Scott, Sean
    Mukherjee, Priyanka
    Lei, Chunhong
    Hartley, Jennifer M.
    Abbott, Andrew P.
    Ryder, Karl S.
    JOURNAL OF POWER SOURCES, 2024, 594
  • [23] Study on preparation and performance of aqueous binder for lithium iron phosphate electrodes in lithium-ion battery
    Cao J.
    Gao X.
    Luo Y.
    Su R.
    Huagong Xuebao/CIESC Journal, 2021, 72 (02): : 1169 - 1180
  • [24] Thermal study on single electrodes in lithium-ion battery
    Huang, Qian
    Yan, Manming
    Jiang, Zhiyu
    JOURNAL OF POWER SOURCES, 2006, 156 (02) : 541 - 546
  • [25] Glass electrodes to shatter the lithium-ion battery world
    不详
    AMERICAN CERAMIC SOCIETY BULLETIN, 2015, 94 (03): : 12 - 12
  • [26] Interfacial adhesion energy of lithium-ion battery electrodes
    Wang, Yan
    Pu, Yujie
    Ma, Zengsheng
    Pan, Yong
    Sun, Chang Q.
    EXTREME MECHANICS LETTERS, 2016, 9 : 226 - 236
  • [27] Electrode Materials for Flexible Lithium-Ion Battery
    Zhang, Changhuan
    Li, Nianwu
    Zhang, Xiuqin
    PROGRESS IN CHEMISTRY, 2021, 33 (04) : 633 - 648
  • [28] Regeneration of spent lithium-ion battery materials
    Wan, Jianfeng
    Lyu, Jianan
    Bi, Wenyan
    Zhou, Qiang
    Li, Pengxun
    Li, Haiyan
    Li, Yingjie
    JOURNAL OF ENERGY STORAGE, 2022, 51
  • [29] Active electrode materials for lithium-ion battery
    Yang, Guang
    Xie, Xinghua
    Meng, Xiangdong
    Wang, Weiguo
    Yang, Jiahua
    FERROELECTRICS, 2023, 607 (01) : 96 - 105
  • [30] Smart and Functional Materials for Lithium-Ion Battery
    Costa, C. M.
    Lanceros-Mendez, S.
    ENERGIES, 2021, 14 (22)