Exploring the strong-coupling region of SU(N) Seiberg-Witten theory

被引:4
|
作者
D'Hoker, Eric [1 ]
Dumitrescu, Thomas T. [1 ]
Nardoni, Emily [2 ]
机构
[1] Univ Calif Los Angeles, Mani L Bhaumik Inst Theoret Phys, Dept Phys & Astron, Los Angeles, CA 90095 USA
[2] Univ Tokyo, Kavli Inst Phys & Math Univ WPI, Kashiwa, Chiba 2778583, Japan
关键词
Supersymmetric Gauge Theory; Supersymmetric Effective Theories; Integrable Field Theories; PICARD-FUCHS EQUATIONS; YANG-MILLS THEORIES; DUALITY; SPECTRUM;
D O I
10.1007/JHEP11(2022)102
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider the Seiberg-Witten solution of pure N = 2 gauge theory in four dimensions, with gauge group SU(N). A simple exact series expansion for the dependence of the 2(N-1) Seiberg-Witten periods alpha(I)(u), alpha(DI)(u) on the N-1 Coulomb-branch moduli u(n) is obtained around the Z(2N)-symmetric point of the Coulomb branch, where all u(n) vanish. This generalizes earlier results for N = 2 in terms of hypergeometric functions, and for N = 3 in terms of Appell functions. Using these and other analytical results, combined with numerical computations, we explore the global structure of the Kahler potential K = 1/2 pi Sigma(I) Im((alpha) over bar alpha(DI)) which is single valued on the Coulomb branch. Evidence is presented that K is a convex function, with a unique minimum at the Z(2N)-symmetric point. Finally, we explore candidate walls of marginal stability in the vicinity of this point, and their relation to the surface of vanishing Kahler potential.
引用
收藏
页数:55
相关论文
共 50 条
  • [21] Seiberg-Witten theory without tears
    O'Raifeartaigh, L
    ALGEBRAIC METHODS IN PHYSICS: SYMPOSIUM FOR THE 60TH BIRTHDAYS OF JIRI PATERA AND PAVEL WINTERNITZ, 2001, : 193 - 204
  • [22] Seiberg-Witten theory and integrable systems
    D'Hoker, E
    Phong, DH
    INTEGRABILITY: THE SEIBERG-WITTEN AND WHITHAM EQUATIONS, 2000, : 43 - 68
  • [23] Monopole condensates in Seiberg-Witten theory
    Saçlioglu, C
    PHYSICS LETTERS B, 1999, 454 (3-4) : 315 - 318
  • [24] The Seiberg-Witten spectrum in string theory
    Brandhuber, A
    Stieberger, S
    GAUGE THEORIES, APPLIED SUPERSYMMETRY AND QUANTUM GRAVITY II, 1997, : 218 - 230
  • [25] Edges, orbifolds, and Seiberg-Witten theory
    Lebrun, Claude
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (03) : 979 - 1021
  • [26] Group theory of Seiberg-Witten model
    O'Raifeartaigh, L
    PHYSICS OF ATOMIC NUCLEI, 1998, 61 (10) : 1696 - 1701
  • [27] Seiberg-Witten for Spin(n) with spinors
    Oscar Chacaltana
    Jacques Distler
    Anderson Trimm
    Journal of High Energy Physics, 2015
  • [28] Seiberg-Witten for Spin(n) with spinors
    Chacaltana, Oscar
    Distler, Jacques
    Trimm, Anderson
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (08):
  • [29] Two antisymmetric hypermultiplets in N=2 SU(N) gauge theory:: Seiberg-Witten curve and M-theory interpretation
    Ennes, IP
    Naculich, SG
    Rhedin, H
    Schnitzer, HJ
    NUCLEAR PHYSICS B, 1999, 558 (1-2) : 41 - 62
  • [30] Seiberg-Witten theory and S-duality
    Eguchi, T
    STRINGS, BRANES AND DUALITIES, 1999, 520 : 103 - 120