Seismic Data Compression using Signal Alignment and PCA

被引:0
|
作者
Nuha, Hilal H. [1 ]
Liu, Bo [1 ]
Mohandes, M. [1 ]
Deriche, M. [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Ctr Energy & Geo Proc CeGP, Dhahran 31261, Saudi Arabia
关键词
PCA; cross-correlation; alignment; seismic traces; compression;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Principal Component Analysis (PCA) offers an optimal dimensionality reduction while maintaining the variances. A set of seismic traces data recorded by a sensor can be compressed by projecting the data to the Principal Components (PCs). The reconstruction error can be determined by choosing number of PCs. If the traces are aligned according to some references, number of PCs becomes fewer for the same preserved eigenvalues. Since the fewer PCs are required, compression ratio becomes higher and transmission cost from each sensor becomes smaller. Maximum amplitude and cross correlation techniques are evaluated to perform traces alignment. In the experiments, the aligned PCA achieves 12:1 compression ratio outperforming conventional PCA with 9.9:1 preserving approximately 99% of energy with reconstruction error 0.8% and 0.68%, respectively.
引用
收藏
页码:35 / 40
页数:6
相关论文
共 50 条
  • [21] Poststack Seismic Data Compression Using a Generative Adversarial Network
    dos Santos Ribeiro, Kevyn Swhants
    Schiavon, Ana Paula
    Navarro, Joao Paulo
    Vieira, Marcelo Bernardes
    Villela, Saulo Moraes
    Cruz E Silva, Pedro Mario
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [22] High performance seismic data compression using wavelet transforms
    Polzer, RS
    Donoho, PL
    Ergas, RA
    Stigant, JP
    MATHEMATICAL METHODS IN GEOPHYSICAL IMAGING IV, 1996, 2822 : 180 - 185
  • [23] Poststack Seismic Data Compression Using a Generative Adversarial Network
    Ribeiro, Kevyn Swhants Dos Santos
    Schiavon, Ana Paula
    Navarro, Joao Paulo
    Vieira, Marcelo Bernardes
    Villela, Saulo Moraes
    E Silva, Pedro Mario Cruz
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [24] Image compression using PCA with clustering
    Wang, Chih-Wen
    Jeng, Jyh-Horng
    IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATIONS SYSTEMS (ISPACS 2012), 2012,
  • [25] Testing Kalman Smoothing/PCA Transient Signal Detection Using Synthetic Data
    Ji, King Hyeun
    Herring, Thomas A.
    SEISMOLOGICAL RESEARCH LETTERS, 2013, 84 (03) : 433 - 443
  • [26] Signal detection using multi-channel seismic data
    Wagner, GS
    Owens, TJ
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 1996, 86 (01) : 221 - 231
  • [27] Signal detection using multi-channel seismic data
    Bull Seismol Soc Am, 1 pt A (221):
  • [28] Seismic data compression using high-dimensional wavelet transforms
    Villasenor, JD
    Ergas, RA
    Donoho, PL
    DCC '96 - DATA COMPRESSION CONFERENCE, PROCEEDINGS, 1996, : 396 - 405
  • [29] Seismic data compression using M-band wavelet transform
    Chengdu Ligong Xueyuan Xuebao, 2 (183-186):
  • [30] DATA-COMPRESSION OF BROAD-BAND SEISMIC DATA USING A PORTABLE PC
    GREEN, RWE
    COMPUTERS & GEOSCIENCES, 1993, 19 (02) : 259 - 262