Seismic Data Compression using Signal Alignment and PCA

被引:0
|
作者
Nuha, Hilal H. [1 ]
Liu, Bo [1 ]
Mohandes, M. [1 ]
Deriche, M. [1 ]
机构
[1] King Fahd Univ Petr & Minerals, Ctr Energy & Geo Proc CeGP, Dhahran 31261, Saudi Arabia
关键词
PCA; cross-correlation; alignment; seismic traces; compression;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Principal Component Analysis (PCA) offers an optimal dimensionality reduction while maintaining the variances. A set of seismic traces data recorded by a sensor can be compressed by projecting the data to the Principal Components (PCs). The reconstruction error can be determined by choosing number of PCs. If the traces are aligned according to some references, number of PCs becomes fewer for the same preserved eigenvalues. Since the fewer PCs are required, compression ratio becomes higher and transmission cost from each sensor becomes smaller. Maximum amplitude and cross correlation techniques are evaluated to perform traces alignment. In the experiments, the aligned PCA achieves 12:1 compression ratio outperforming conventional PCA with 9.9:1 preserving approximately 99% of energy with reconstruction error 0.8% and 0.68%, respectively.
引用
收藏
页码:35 / 40
页数:6
相关论文
共 50 条
  • [1] Combining PCA and DCT for Improved Passive Seismic Data Compression
    Wagner, Matheus
    de Lucena, Mateus Martinez
    Ribeiro, Josafat Leal
    Frohlich, Antonio Augusto
    IEEE ACCESS, 2024, 12 : 170648 - 170660
  • [2] Global PCA for In-Field Compression of Seismic Data Acquisition
    Almubarak, Bader F.
    Aleisa, Yousef I.
    Liu, Bo
    Muqaibel, Ali H.
    2017 9TH IEEE-GCC CONFERENCE AND EXHIBITION (GCCCE), 2018, : 31 - 34
  • [3] Seismic data compression using GULLOTs
    Duval, LC
    Nagai, T
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING, 2001, : 1765 - 1768
  • [4] Seismic Data Compression Using Deep Learning
    Helal, Emad B.
    Saad, Omar M.
    Hafez, Ali G.
    Chen, Yangkang
    Dousoky, Gamal M.
    IEEE ACCESS, 2021, 9 : 58161 - 58169
  • [5] Denoising based on wavelet and PCA signal compression
    Majkowski, A
    Rak, RJ
    Godziemba-Maliszewski, M
    2005 IEEE INTERNATIONAL WORKSHOP ON INTELLIGENT SIGNAL PROCESSING (WISP), 2005, : 70 - 73
  • [6] Seismic data compression
    J Offshore Technol, 1 (32-33):
  • [7] Adaptive Seismic Data Compression Using Wavelet Packets
    Wu, Wenbo
    Yang, Zhigao
    Qin, Qianqing
    Hu, Fuxiang
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 787 - +
  • [8] Improved data management for seismic interpretation using compression
    Donoho, PL
    Ergas, RA
    Polzer, RS
    MATHEMATICAL METHODS IN GEOPHYSICAL IMAGING V, 1998, 3453 : 140 - 146
  • [9] Advances in Seismic Data Compression via Learning from Data Compression for seismic data acquisition
    Payani, Ali
    Abdi, Afshin
    Tian, Xin
    Fekri, Faramarz
    Mohandes, Mohamed
    IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (02) : 51 - 61
  • [10] Multi-Component Temporal-Correlation Seismic Data Compression Algorithm Based on the PCA and DWT
    de Lucena, Mateus Martinez
    Ribeiro, Josafat Leal
    Wagner, Matheus
    Frohlich, Antonio Augusto
    ALGORITHMS, 2025, 18 (01)