Entropy;
Monte Carlo simulation;
Test power;
EXTREME-VALUE DISTRIBUTION;
D O I:
10.1080/03610920802316658
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
A goodness-of-fit test for the Gumbel distribution is proposed. This test is based on the Kullback-Leibler discrimination information methodology proposed by Song (2002). The critical values of the test were obtained by using Monte Carlo simulation for small sample sizes and different levels of significance. The proposed test is compared with the tests developed by Stephens (1977), Chandra et al. (1981), and the test given by Kinnison (1989) in terms of their power by considering various alternative distributions. Simulation results show that the Kullback-Leibler information test has higher power than some of the studied tests.
机构:
IIMAS UNAM, Dept Probabil & Stat, Apdo Postal 20-126, Mexico City 01000, DF, MexicoIIMAS UNAM, Dept Probabil & Stat, Apdo Postal 20-126, Mexico City 01000, DF, Mexico
Contreras-Cristan, A.
Gutierrez-Pena, E.
论文数: 0引用数: 0
h-index: 0
机构:
IIMAS UNAM, Dept Probabil & Stat, Apdo Postal 20-126, Mexico City 01000, DF, MexicoIIMAS UNAM, Dept Probabil & Stat, Apdo Postal 20-126, Mexico City 01000, DF, Mexico
Gutierrez-Pena, E.
Walker, S. G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Austin, Dept Math, Austin, TX 78712 USA
Univ Texas Austin, Dept Stat & Data Sci, Austin, TX 78712 USAIIMAS UNAM, Dept Probabil & Stat, Apdo Postal 20-126, Mexico City 01000, DF, Mexico
机构:
McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
King Saud Univ, Fac Sci, Riyadh, Saudi ArabiaFerdowsi Univ Mashhad, Dept Stat, Sch Math Sci, Mashhad, Iran