Separable descent of totally decomposable orthogonal involutions in characteristic two

被引:1
|
作者
Nokhodkar, A. -H. [1 ]
机构
[1] Univ Kashan, Dept Pure Math, Fac Sci, POB 87317-51167, Kashan, Iran
关键词
bilinear Pfister form; characteristic two; orthogonal involution; separable descent; Totally decomposable algebra; QUADRATIC DESCENT;
D O I
10.1080/00927872.2018.1461895
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some necessary and su & cient conditions are obtained for a totally decomposable algebra with orthogonal involution in characteristic two to have a separable descent.
引用
收藏
页码:5283 / 5289
页数:7
相关论文
共 50 条
  • [21] The descent of biquaternion algebras in characteristic two
    Barry, Demba
    Chapman, Adam
    Laghribi, Ahmed
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2020, 235 (01) : 295 - 323
  • [22] Optimal realizations of two-dimensional, totally-decomposable metrics
    Herrmann, Sven
    Koolen, Jack H.
    Lesser, Alice
    Moulton, Vincent
    Wu, Taoyang
    [J]. DISCRETE MATHEMATICS, 2015, 338 (08) : 1289 - 1299
  • [24] On involutions of type O(q, k) over a field of characteristic two
    Hunnell, Mark
    Hutchens, John
    Schwartz, Nathaniel
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 593 : 228 - 250
  • [25] Involutions of Type G2 Over Fields of Characteristic Two
    Hutchens, John
    Schwartz, Nathaniel
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2018, 21 (03) : 487 - 510
  • [27] Involutions of Type G2 Over Fields of Characteristic Two
    John Hutchens
    Nathaniel Schwartz
    [J]. Algebras and Representation Theory, 2018, 21 : 487 - 510
  • [28] Orthogonal Implementation of Two-Dimensional Separable Denominator Systems
    Wirski, Robert T.
    Strzeszewski, Bogdan
    Wawryn, Krzysztof
    [J]. INTERNATIONAL CONFERENCE ON SIGNALS AND ELECTRONIC SYSTEMS (ICSES '10): CONFERENCE PROCEEDINGS, 2010, : 371 - 374
  • [29] Orthogonal Bundles Over Curves in Characteristic Two
    Pauly, Christian
    [J]. VECTOR BUNDLES AND COMPLEX GEOMETRY, 2010, 522 : 131 - 140
  • [30] Correction to: Involutions of Type G2 over a Field of Characteristic Two
    John Hutchens
    Nathaniel Schwartz
    [J]. Algebras and Representation Theory, 2021, 24 : 1641 - 1642