Organic Hole-Transport Layers for Efficient, Stable, and Scalable Inverted Perovskite Solar Cells

被引:198
|
作者
Yao, Yiguo [1 ]
Cheng, Caidong [1 ]
Zhang, Chenyang [1 ]
Hu, Hanlin [2 ]
Wang, Kai [1 ]
De Wolf, Stefaan [3 ,4 ]
机构
[1] Northwestern Polytech Univ, Inst Flexible Elect IFE, Xian 710072, Peoples R China
[2] Shenzhen Polytech, Hoffman Inst Adv Mat, 7098 Liuxian Blvd, Shenzhen 518055, Peoples R China
[3] King Abdullah Univ Sci & Technol KAUST, Div Phys Sci & Engn, Thuwal 239556900, Saudi Arabia
[4] King Abdullah Univ Sci & Technol KAUST, KAUST Solar Ctr, Thuwal 239556900, Saudi Arabia
关键词
inverted perovskite solar cells; organic hole-transporting layers; polymer; self-assembled monolayers; small molecules; SOLUTION-PROCESSED PEROVSKITE; SELF-ASSEMBLED MONOLAYERS; PLANAR PEROVSKITE; HIGHLY EFFICIENT; CONJUGATED POLYELECTROLYTE; HIGH-MOBILITY; PERFORMANCE; PEDOTPSS; OXIDE; ENHANCEMENT;
D O I
10.1002/adma.202203794
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hole-transporting layers (HTLs) are an essential component in inverted, p-i-n perovskite solar cells (PSCs) where they play a decisive role in extraction and transport of holes, surface passivation, perovskite crystallization, device stability, and cost. Currently, the exploration of efficient, stable, highly transparent and low-cost HTLs is of vital importance for propelling p-i-n PSCs toward commercialization. Compared to their inorganic counterparts, organic HTLs offer multiple advantages such as a tunable bandgap and energy level, easy synthesis and purification, solution processability, and overall low cost. Here, recent progress of organic HTLs, including conductive polymers, small molecules, and self-assembled monolayers, as utilized in inverted PSCs is systematically reviewed and summarized. Their molecular structure, hole-transport properties, energy levels, and relevant device properties and resulting performances are presented and analyzed. A summary of design principles and a future outlook toward highly efficient organic HTLs in inverted PSCs is proposed. This review aims to inspire further innovative development of novel organic HTLs for more efficient, stable, and scalable inverted PSCs.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Efficient and Stable Inverted Perovskite Solar Cells Enabled by a Fullerene-Based Hole Transport Molecule
    Luo, Jiefeng
    Zhang, Hui
    Sun, Chao
    Hou, Enlong
    Wang, Xin
    Guo, Sai
    Chen, Jingfu
    Cheng, Shuo
    Chen, Shanshan
    Zhao, Xinjing
    Xie, Liqiang
    Meng, Lingyi
    Tian, Chengbo
    Wei, Zhanhua
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (51)
  • [42] Nickel Chlorophyll-Derived Hole Transport Materials for Stable and Efficient Inverted Perovskite Solar Cells
    Liu, Ziyan
    Wang, Xianzhao
    Xiang, Tianfu
    Shibayama, Naoyuki
    Li, Aijun
    Xu, Yuting
    Sun, Yuting
    Ren, Hangchen
    Sasaki, Shin-ichi
    Tamiaki, Hitoshi
    Miyasaka, Tsutomu
    Wang, Xiao-Feng
    NANO LETTERS, 2025,
  • [43] Efficient and Stable Inverted Perovskite Solar Cells with Graphene Oxide-Modified Hole Transport Layer
    Chen, Yuanyuan
    Cheng, Zhendong
    Qiao, Feiyang
    Gao, Chao
    Zhang, Dezhao
    Wang, Yangrunqian
    Wang, Xin
    Liang, Jinjin
    Liu, Hong
    Shen, Wenzhong
    ENERGY TECHNOLOGY, 2022, 10 (11)
  • [44] CuGaO2 Nanosheet Arrays as the Hole-Transport Layer in Inverted Perovskite Solar Cells
    Chen, Liang
    Qiu, Linlin
    Wang, Huijia
    Yuan, Yongfeng
    Song, Lixin
    Xie, Fuqiang
    Xiong, Jie
    Du, Pingfan
    ACS APPLIED NANO MATERIALS, 2022, 5 (07) : 10055 - 10063
  • [45] Dopant-free star-shaped hole-transport materials for efficient and stable perovskite solar cells
    Zhang, Fei
    Zhao, Xiaoming
    Yi, Chenyi
    Bi, Dongqin
    Bi, Xiangdong
    Wei, Peng
    Liu, Xicheng
    Wang, Shirong
    Li, Xianggao
    Zakeeruddin, Shaik Mohammed
    Gratzel, Michael
    DYES AND PIGMENTS, 2017, 136 : 273 - 277
  • [46] Graphene assisted crystallization and charge extraction for efficient and stable perovskite solar cells free of a hole-transport layer
    Shalan, Ahmed Esmail
    Mohammed, Mustafa K. A.
    Govindan, Nagaraj
    RSC ADVANCES, 2021, 11 (08) : 4417 - 4424
  • [47] High transmittance inorganic semiconductors as a hole-transport window for planar inverted perovskite solar cells
    He, Zhubing
    2017 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2017,
  • [48] Graphdiyne oxide doping for aggregation control of hole-transport nanolayer in inverted perovskite solar cells
    Cai, Xu
    Tang, Jin
    Zhao, Min
    Liu, Le
    Yu, Zhibin
    Du, Jiajia
    Bai, Ling
    Lu, Fushen
    Jiu, Tonggang
    Li, Yuliang
    NANO RESEARCH, 2022, 15 (11) : 9734 - 9740
  • [49] Polyfluorene Copolymers as High-Performance Hole-Transport Materials for Inverted Perovskite Solar Cells
    Hu, Jinlong
    You, Jiang
    Peng, Chang
    Qiu, Shudi
    He, Wenxin
    Li, Chaohui
    Liu, Xianhu
    Mai, Yaohua
    Guo, Fei
    SOLAR RRL, 2020, 4 (03)
  • [50] Thermally Stable Perovskite Solar Cells by Systematic Molecular Design of the Hole-Transport Layer
    Schloemer, Tracy H.
    Gehan, Timothy S.
    Christians, Jeffrey A.
    Mitchell, Deborah G.
    Dixon, Alex
    Li, Zhen
    Zhu, Kai
    Berry, Joseph J.
    Luther, Joseph M.
    Sellinger, Alan
    ACS ENERGY LETTERS, 2019, 4 (02) : 473 - 482