Solutions of the Fourth-Order Equation in the Generalized Hierarchy of the Second Painleve Equation

被引:3
|
作者
Gromak, V. I. [1 ]
机构
[1] Belarusian State Univ, Minsk 220030, BELARUS
关键词
D O I
10.1134/S0012266119030066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the analytic properties of solutions of the fourth-order higher analog of the second Painleve equation and study the local properties of solutions, Backlund transformations, rational solutions, and their representation via generalized Yablonskii-Vorob'ev polynomials.
引用
收藏
页码:328 / 339
页数:12
相关论文
共 50 条
  • [21] Antiperiodic solutions of fourth-order impulsive differential equation
    Tian, Yu
    Shang, Suiming
    Huo, Qiang
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (02) : 769 - 780
  • [22] PERIODIC SOLUTIONS OF FOURTH-ORDER DELAY DIFFERENTIAL EQUATION
    Balamuralitharan, S.
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (02): : 307 - 314
  • [23] EXISTENCE OF POSITIVE SOLUTIONS FOR A PERTUBED FOURTH-ORDER EQUATION
    Tavani, Mohammad Reza Heidari
    Nazari, Abdollah
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2021, 45 (04): : 623 - 633
  • [24] Rational solutions and interaction solutions for a fourth-order nonlinear generalized Boussinesq water wave equation
    Meng, Qing
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 110
  • [25] Normalized solutions for a fourth-order Schrodinger equation with a positive second-order dispersion coefficient
    Luo, Xiao
    Yang, Tao
    [J]. SCIENCE CHINA-MATHEMATICS, 2023, 66 (06) : 1237 - 1262
  • [26] Analytic rogue wave solutions for a generalized fourth-order Boussinesq equation in fluid mechanics
    Ma, Yu-Lan
    Li, Bang-Qing
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (01) : 39 - 48
  • [27] Analytical and numerical solutions to the generalized Schrödinger equation with fourth-order dispersion and nonlinearity
    Attia, Raghda A. M.
    Alfalqi, Suleman H.
    Alzaidi, Jameel F.
    Khater, Mostafa M. A.
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024,
  • [28] The Quantization of a Fourth-Order Equation without a Second-Order Lagrangian
    M. C. Nucci
    P. G. L. Leach
    [J]. Journal of Nonlinear Mathematical Physics, 2010, 17 : 485 - 490
  • [29] THE QUANTIZATION OF A FOURTH-ORDER EQUATION WITHOUT A SECOND-ORDER LAGRANGIAN
    Nucci, M. C.
    Leach, P. G. L.
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2010, 17 (04) : 485 - 490
  • [30] Fourth-order Bessel equation: eigenpackets and a generalized Hankel transform
    Everitt, W. N.
    Kalf, H.
    Littlejohn, L. L.
    Markett, C.
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2006, 17 (12) : 845 - 862