On inhibition of premature convergence in Genetic Algorithms for mobile robot control

被引:0
|
作者
Shintaku, Satoshi [1 ]
Nakano, Kazushi [1 ,2 ]
机构
[1] Univ Electrocommun, Dept Mech Eng & Intelligent Syst, Chofu, Tokyo 182, Japan
[2] Univ Electrocommun, Dept Elect Engn, Chofu, Tokyo 182, Japan
来源
PROCEEDINGS OF THE EIGHTEENTH INTERNATIONAL SYMPOSIUM ON ARTIFICIAL LIFE AND ROBOTICS (AROB 18TH '13) | 2013年
关键词
Genetic Algorithms; Premature Convergence; Optimization Problem; Evolutionary Robotics;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Methods of Evolutionary Robotics using the evolutionary computation has been applied to design of mobile robot controllers. Genetic algorithms (GAs), ones of the typical methods in the evolutionary computation, have advantages that hardly fall into local minima compared to the other optimization algorithms. However the GAs have a big problem of premature convergence that the variety of the population is reduced, so the searching ability is degraded. In this study, through analysis of a new individual generation in GAs, we propose two methods of Probabilistic Crossover and Fluctuant Mutation to inhibit the premature convergence. We apply our proposal methods to benchmark problems in optimization and to controller design of the peg pushing robot, and demonstrate the effectiveness of our proposed methods.
引用
收藏
页码:146 / 151
页数:6
相关论文
共 50 条
  • [31] Improvements of real coded genetic algorithms based on differential operators preventing premature convergence
    Hrstka, O
    Kucerová, A
    ADVANCES IN ENGINEERING SOFTWARE, 2004, 35 (3-4) : 237 - 246
  • [32] A new selection operator for genetic algorithms that balances between premature convergence and population diversity
    Hussain, Abid
    Cheema, Salman A.
    CROATIAN OPERATIONAL RESEARCH REVIEW, 2020, 11 (01) : 107 - 119
  • [33] Preventing premature convergence to local optima in genetic algorithms via random offspring generation
    Rocha, M
    Neves, J
    MULTIPLE APPROACHES TO INTELLIGENT SYSTEMS, PROCEEDINGS, 1999, 1611 : 127 - 136
  • [34] Mechanism for Preventing Premature Convergence in Robot Localization
    Chien, Chiang-Heng
    Hsu, Chen-Chien
    Wang, Wei-Yen
    Kao, Wen-Chung
    2015 IEEE 5TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - BERLIN (ICCE-BERLIN), 2015, : 445 - 446
  • [35] Avoiding premature convergence in Estimation of Distribution Algorithms
    delaOssa, Luis
    Gamez, Jose A.
    Mateo, Juan L.
    Puerta, Jose M.
    2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 455 - 462
  • [36] Control of modular robot with parameter estimation using genetic algorithms
    Adamson, M.
    Abdul, S.
    Liu, G.
    2007 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS I-V, CONFERENCE PROCEEDINGS, 2007, : 1 - 6
  • [37] Optimal robot hand preshaping control using genetic algorithms
    Gunver, H
    Erkmen, AM
    PROCEEDINGS OF THE 1997 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL, 1997, : 137 - 142
  • [38] On Convergence and Optimality of Genetic Algorithms
    Kosinski, Witold
    Kotowski, Stefan
    Michalewicz, Zbyszek
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [39] Convergence conditions of Genetic Algorithms
    Universidad Politecnica de Madrid, Madrid, Spain
    Int J Comput Math, 3 /4 (231-241):
  • [40] Notes on the convergence of genetic algorithms
    Qiu, YH
    Liu, YF
    PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, : 508 - 511